scholarly journals Human thermal perception and time of day: A review

Temperature ◽  
2021 ◽  
pp. 1-22
Author(s):  
Marika Vellei ◽  
Giorgia Chinazzo ◽  
Kirsi-Marja Zitting ◽  
Jeffrey Hubbard
2021 ◽  
pp. 1420326X2110345
Author(s):  
Marika Vellei ◽  
William O’Brien ◽  
Simon Martinez ◽  
Jérôme Le Dréau

Recent research suggests that a time-varying indoor thermal environment can lead to energy savings and contribute to boost buildings' energy flexibility. However, thermal comfort standardization has so far considered thermal comfort criteria as constant throughout the day. In general, very little attention has been given to the ‘ time of day' variable in the context of thermal comfort research. In this paper, we show some evidence of a time-varying thermal perception by using: (1) data from about 10,000 connected Canadian thermostats made available as part of the ‘ Donate Your Data' dataset and (2) about 22,000 samples of complete (objective + ‘ right-here-right-now' subjective) thermal comfort field data from the ASHRAE I and SCATs datasets. We observe that occupants prefer colder thermal conditions at 14:00 and progressively warmer ones in the rest of the day, indistinctively in the morning and evening. Neutral temperature differences between 08:00 and 14:00 and 14:00 and 20:00 are estimated to be of the order of 2°C. We hypothesize that the human circadian rhythm is the cause of this difference. Nevertheless, the results of this study are only based on observational data. Thermal comfort experiments in controlled environmental chambers are required to confirm these findings and to better elucidate the effects of light and circadian timing and their interaction on thermal perception.


2002 ◽  
Author(s):  
Jacquelyn J. Graven ◽  
Tracy A. Manners ◽  
James O. Davis

2006 ◽  
Author(s):  
Ann Louise Barrick ◽  
Philip D. Sloane ◽  
Madeline Mitchell ◽  
Christianna Williams ◽  
Wendy Wood

2018 ◽  
Vol 68 (08) ◽  
pp. e24-e25
Author(s):  
G Zerbini ◽  
V van der Vinne ◽  
L Otto ◽  
A Siersema ◽  
A Pieper ◽  
...  

2020 ◽  
Vol 635 ◽  
pp. 187-202
Author(s):  
T Brough ◽  
W Rayment ◽  
E Slooten ◽  
S Dawson

Many species of marine predators display defined hotspots in their distribution, although the reasons why this happens are not well understood in some species. Understanding whether hotspots are used for certain behaviours provides insights into the importance of these areas for the predators’ ecology and population viability. In this study, we investigated the spatiotemporal distribution of foraging behaviour in Hector’s dolphin Cephalorhynchus hectori, a small, endangered species from New Zealand. Passive acoustic monitoring of foraging ‘buzzes’ was carried out at 4 hotspots and 6 lower-use, ‘reference areas’, chosen randomly based on a previous density analysis of visual sightings. The distribution of buzzes was modelled among spatial locations and on 3 temporal scales (season, time of day, tidal state) with generalised additive mixed models using 82000 h of monitoring data. Foraging rates were significantly influenced by all 3 temporal effects, with substantial variation in the importance and nature of each effect among locations. The complexity of the temporal effects on foraging is likely due to the patchy nature of prey distributions and shows how foraging is highly variable at fine scales. Foraging rates were highest at the hotspots, suggesting that feeding opportunities shape fine-scale distribution in Hector’s dolphin. Foraging can be disrupted by anthropogenic influences. Thus, information from this study can be used to manage threats to this vital behaviour in the locations and at the times where it is most prevalent.


Sign in / Sign up

Export Citation Format

Share Document