scholarly journals Mitochondrial respiratory defects promote the Warburg effect and cancer progression

2015 ◽  
Vol 3 (2) ◽  
pp. e1085120 ◽  
Author(s):  
Satish Srinivasan ◽  
Manti Guha ◽  
Narayan G. Avadhani
2014 ◽  
Vol 20 (10) ◽  
pp. 2595-2606 ◽  
Author(s):  
Jiujie Cui ◽  
Min Shi ◽  
Dacheng Xie ◽  
Daoyan Wei ◽  
Zhiliang Jia ◽  
...  

Hepatology ◽  
2015 ◽  
Vol 62 (4) ◽  
pp. 1145-1159 ◽  
Author(s):  
Huizhen Nie ◽  
Jun Li ◽  
Xiao‐Mei Yang ◽  
Qing‐Zhen Cao ◽  
Ming‐Xuan Feng ◽  
...  

2017 ◽  
Vol 114 (43) ◽  
pp. 11440-11445 ◽  
Author(s):  
Smriti Singh ◽  
Sathiya Pandi Narayanan ◽  
Kajal Biswas ◽  
Amit Gupta ◽  
Neha Ahuja ◽  
...  

Aberrant alternative splicing and epigenetic changes are both associated with various cancers, but epigenetic regulation of alternative splicing in cancer is largely unknown. Here we report that the intragenic DNA methylation-mediated binding of Brother of Regulator of Imprinted Sites (BORIS) at the alternative exon of Pyruvate Kinase (PKM) is associated with cancer-specific splicing that promotes the Warburg effect and breast cancer progression. Interestingly, the inhibition of DNA methylation, BORIS depletion, or CRISPR/Cas9-mediated deletion of the BORIS binding site leads to a splicing switch from cancer-specific PKM2 to normal PKM1 isoform. This results in the reversal of the Warburg effect and the inhibition of breast cancer cell growth, which may serve as a useful approach to inhibit the growth of breast cancer cells. Importantly, our results show that in addition to PKM splicing, BORIS also regulates the alternative splicing of several genes in a DNA methylation-dependent manner. Our findings highlight the role of intragenic DNA methylation and DNA binding protein BORIS in cancer-specific splicing and its role in tumorigenesis.


2007 ◽  
Vol 30 (4) ◽  
pp. 97 ◽  
Author(s):  
A Wolf ◽  
J Mukherjee ◽  
A Guha

Introduction: GBMs are resistant to apoptosis induced by the hypoxic microenvironment and standard therapies including radiation and chemotherapy. We postulate that the Warburg effect, a preferential glycolytic phenotype of tumor cells even under aerobic conditions, plays a role in these aberrant pro-survival signals. In this study we quantitatively examined the expression profile of hypoxia-related glycolytic genes within pathologically- and MRI-defined “centre” and “periphery” of GBMs. We hypothesize that expression of hypoxia-induced glycolytic genes, particularly hexokinase 2 (HK2), favours cell survival and modulates resistance to tumour cell apoptosis by inhibiting the intrinsic mitochondrial apoptotic pathway. Methods: GBM patients underwent conventional T1-weighted contrast-enhanced MRI and MR spectroscopy studies on a 3.0T GE scanner, prior to stereotactic sampling (formalin and frozen) from regions which were T1-Gad enhancing (“centre”) and T2-positive, T1-Gad negative (“periphery”). Real-time qRT-PCR was performed to quantify regional gene expression of glycolytic genes including HK2. In vitro functional studies were performed in U87 and U373 GBM cell lines grown in normoxic (21% pO2) and hypoxic (< 1%pO2) conditions, transfected with HK2 siRNA followed by measurement of cell proliferation (BrdU), apoptosis (activated caspase 3/7, TUNEL, cytochrome c release) and viability (MTS assay). Results: There exists a differential expression profile of glycolytic enzymes between the hypoxic center and relatively normoxic periphery of GBMs. Under hypoxic conditions, there is increased expression of HK2 at the mitochondrial membrane in GBM cells. In vitro HK2 knockdown led to decreased cell survival and increased apoptosis via the intrinsic mitochondrial pathway, as seen by increased mitochondrial release of cytochrome-C. Conclusions: Increased expression of HK2 in the centre of GBMs promotes cell survival and confers resistance to apoptosis, as confirmed by in vitro studies. In vivo intracranial xenograft studies with injection of HK2-shRNA are currently being performed. HK2 and possibly other glycolytic enzymes may provide a target for enhanced therapeutic responsiveness thereby improving prognosis of patients with GBMs.


2017 ◽  
Vol 18 (9) ◽  
Author(s):  
Mohadeseh Hasanpourghadi ◽  
Chung Yeng Looi ◽  
Ashok Kumar Pandurangan ◽  
Gautam Sethi ◽  
Won Fen Wong ◽  
...  

2018 ◽  
Vol 1870 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Linchong Sun ◽  
Caixia Suo ◽  
Shi-ting Li ◽  
Huafeng Zhang ◽  
Ping Gao

2021 ◽  
pp. 1159-1167
Author(s):  
Zainab Al Maqrashi ◽  
Mary Sedarous ◽  
Avinash Pandey ◽  
Catherine Ross ◽  
Ahraaz Wyne

Lactate is a byproduct of anaerobic glycolysis, and hyperlactatemia is commonly seen in critically ill patients. We report a case of an elderly male presenting with undifferentiated constitutional symptoms, anemia, thrombocytopenia, severe lactic acidosis, refractory hypoglycemia, and a newly detected abdominal mass. A dedicated workup ruled out infectious etiologies and revealed metastatic non-Hodgkin’s lymphoma. This study explores etiologies of type B lactic acidosis in oncology patients, with a focus on Warburg’s effect, and its potential for prognostication.


Sign in / Sign up

Export Citation Format

Share Document