Mitochondrial DNA marker (D-loop) reveals high genetic diversity but low population structure in the pale bent-wing bat (Miniopterus pallidus) in Iran

2018 ◽  
Vol 30 (3) ◽  
pp. 424-433 ◽  
Author(s):  
Robab Mehdizadeh ◽  
Vahid Akmali ◽  
Mozafar Sharifi
Author(s):  
Athumani Nguluma

The Small East African (SEA) goat (Capra hircus) breeds are widely distributed in different agro-ecological zones of Tanzania. We report the genetic diversity, maternal origin, and phylogenetic relationship among the 12 Tanzanian indigenous goats populations, namely Fipa (n = 44), Songwe (n = 34), Tanga (n = 33), Pwani (n = 40), Newala (n = 49), Lindi (n = 46), Gogo (n = 73), Pare (n = 67), Maasai (n = 72), Sukuma (n = 67), and Ujiji (n = 67), based on the mitochondrial DNA (mtDNA) D-loop. High haplotype (Hd = 0.9619-0.9945) and nucleotide (π = 0.0120-0.0162) diversities were revealed from a total of 389 haplotypes. The majority of the haplotypes (h = 334) drawn from all the goat populations belonged to Haplogroup A which was consistent with the global scenario on the genetic pattern of maternal origin of all goat breeds in the world. Haplogroup G comprised of 45 haplotypes drawn from all populations except the Ujiji goat population while Haplogroup B with 10 haplotypes was dominated by Ujiji goats (41%). Tanzanian goats shared four haplotypes with the Kenyan goats and two with goats from South Africa, Namibia, and Mozambique. There was no sharing of haplotypes observed between individuals from Tanzanian goat populations with individuals from North or West Africa. The indigenous goats in Tanzania have high genetic diversity defined by 389 haplotypes and multiple maternal origins of haplogroup A, B and G. There is a lot of intermixing and high genetic variation within populations which represent an abundant resource for selective breeding in the different agro-ecological regions of the country.


2014 ◽  
Vol 76 (11) ◽  
pp. 1451-1456 ◽  
Author(s):  
Masaki TAKASU ◽  
Namiko ISHIHARA ◽  
Teruaki TOZAKI ◽  
Hironaga KAKOI ◽  
Masami MAEDA ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 155
Author(s):  
Kefena Effa ◽  
Sonia Rosenbom ◽  
Jianlin Han ◽  
Tadelle Dessie ◽  
Albano Beja-Pereira

Matrilineal genetic diversity and relationship were investigated among eight morphologically identified native Ethiopian horse populations using polymorphisms in 46 mtDNA D-loop sequences (454 base pairs). The horse populations identified were Abyssinian, Bale, Borana, Horro, Kafa, Kundido feral horses, Ogaden and Selale. Mitochondrial DNA D-loop sequences were characterized by 15 variable sites that defined five different haplotypes. All genetic diversity estimates, including Reynolds’ linearized genetic distance, genetic differentiation (FST) and nucleotide sequence divergence (DA), revealed a low genetic differentiation in native Ethiopian horse populations. However, Kundido feral and Borana domestic horses were slightly diverged from the rest of the Ethiopian horse populations. We also tried to shed some light on the matrilineal genetic root of native Ethiopian horses from a network constructed by combining newly generated haplotypes and reference haplotypes deposited in the GenBank for Eurasian type Turkish Anatolian horses that were used as a genetic conduit between Eurasian and African horse populations. Ninety-two haplotypes were generated from the combined Ethio-Eurasian mtDNA D-loop sequences. A network reconstructed from the combined haplotypes using Median-Joining algorithm showed that haplotypes generated from native Ethiopian horses formed separate clusters. The present result encourages further investigation of the genetic origin of native African horses by retrieving additional mtDNA sequences deposited in the GenBank for African and Eurasian type horses.


2022 ◽  
Vol 101 (1) ◽  
Author(s):  
Rongala Laxmivandana ◽  
Yoya Vashi ◽  
Dipjyoti Kalita ◽  
Santanu Banik ◽  
Nihar Ranjan Sahoo ◽  
...  

ZooKeys ◽  
2021 ◽  
Vol 1055 ◽  
pp. 135-148
Author(s):  
Dongqi Liu ◽  
Feng Lan ◽  
Sicai Xie ◽  
Yi Diao ◽  
Yi Zheng ◽  
...  

To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 populations collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019 (P > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant (P > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change. A correlation analysis showed that the genetic diversity of the seven populations collected in 2019 was significantly negatively correlated with geographical height (r = −0.808, P = 0.028), indicating that the populations at high elevations were more vulnerable than those at low elevations. In order to prevent the further decrease of genetic diversity and population resources, some conservation and restoration suggestions, such as fish passage and artificial breeding, are put forward.


Sign in / Sign up

Export Citation Format

Share Document