scholarly journals Dynamic genetic diversity and population structure of Coreius guichenoti

ZooKeys ◽  
2021 ◽  
Vol 1055 ◽  
pp. 135-148
Author(s):  
Dongqi Liu ◽  
Feng Lan ◽  
Sicai Xie ◽  
Yi Diao ◽  
Yi Zheng ◽  
...  

To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 populations collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019 (P > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant (P > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change. A correlation analysis showed that the genetic diversity of the seven populations collected in 2019 was significantly negatively correlated with geographical height (r = −0.808, P = 0.028), indicating that the populations at high elevations were more vulnerable than those at low elevations. In order to prevent the further decrease of genetic diversity and population resources, some conservation and restoration suggestions, such as fish passage and artificial breeding, are put forward.

2018 ◽  
Vol 66 (6) ◽  
pp. 335
Author(s):  
T. Pan ◽  
P. Yan ◽  
M. Yang ◽  
H. Wang ◽  
I. Ali ◽  
...  

Dispersal is a key component of a species’ life history, by influencing population persistence, genetic structure, adaptation and maintenance of genetic diversity. The Asiatic toad (Bufo gargarizans) is a widespread species in east Asia. However, we still have no knowledge of what kind of geographical scale equates to genetic differentiation within B. gargarizans. In this study, the population genetics of B. gargarizans was studied at five localities, with the Yangtze River running through the sampling area, in order to detect the level of genetic differentiation and the natural barriers to the species’ dispersal on a small geographic scale, by means of the development and use of novel microsatellite loci. These markers revealed a relatively high level of genetic diversity. Distinct genetic structure among populations in B. gargarizans was observed, as described by genetic distance, AMOVA, PCA and Geneland results. A weak but significant positive correlation between genetic distance and geographical distance. The combination of these findings suggests that the Yangtze River and geographic distance may act as effective barriers for B. gargarizans. These results serve as benchmark data for understanding the impacts of dispersal barriers and continued landscape research on B. gargarizans.


1997 ◽  
Vol 54 (1) ◽  
pp. 47-58 ◽  
Author(s):  
G Lu ◽  
S Li ◽  
L Bernatchez

Silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon piceus), bighead carp (Aristichthys nobilis), and black carp(Mylopharyngodon piceus) rank first, second, fourth, and seventh in world fish production. In China, the Yangtze River harbours the most important natural populations of these species. We performed a polymerase chain reaction - restriction fragment length poymorphism analysis on 365 juvenile fish representing three nursery grounds to provide a first assessment of the mitochondrial DNA diversity in these species and test the hypothesis that they are composed of more than one genetic stock. The mitochondrial DNA diversity was high in silver, bighead, and black carp, and much less in grass carp. Analysis of heterogeneity of genotype frequency, fixation indices, intersite molecular variance, and localization indices indicated that juvenile silver, bighead, and black carp from different nursery areas belong to genetically distinct populations. These results suggest that their population structure may be determined by the number of environmental settings that permit closure of their life cycle. They also imply that carp from the Yangtze River cannot be managed as a single unit and that human disturbance through exploitation and habitat modifications, in particular the construction of the Three Gorges Dam, will have differential impacts on fish abundance for different parts of the river.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kean Chong Lim ◽  
Amy Yee-Hui Then ◽  
Alison Kim Shan Wee ◽  
Ahemad Sade ◽  
Richard Rumpet ◽  
...  

AbstractThe demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.


2020 ◽  
Vol 33 (6) ◽  
pp. 902-912 ◽  
Author(s):  
Onolragchaa Ganbold ◽  
Seung-Hwan Lee ◽  
Woon Kee Paek ◽  
Munkhbaatar Munkhbayar ◽  
Dongwon Seo ◽  
...  

Objective: Mongolia is one of a few countries that supports over 25 million goats, but genetic diversity, demographic history, and the origin of goat populations in Mongolia have not been well studied. This study was conducted to assess the genetic diversity, phylogenetic status and population structure of Mongolian native goats, as well as to discuss their origin together with other foreign breeds from different countries using hypervariable region 1 (HV1) in mtDNA.Methods: In this study, we examined the genetic diversity and phylogenetic status of Mongolian native goat populations using a 452 base-pair long fragment of HVI of mitochondrial DNA from 174 individuals representing 12 populations. In addition, 329 previously published reference sequences from different regions were included in our phylogenetic analyses.Results: Investigated native Mongolian goats displayed relatively high genetic diversities. After sequencing, we found a total of 109 polymorphic sites that defined 137 haplotypes among investigated populations. Of these, haplotype and nucleotide diversities of Mongolian goats were calculated as 0.997±0.001 and 0.0283±0.002, respectively. These haplotypes clearly clustered into four haplogroups (A, B, C, and D), with the predominance of haplogroup A (90.8%). Estimates of pairwise differences (Fst) and the analysis of molecular variance values among goat populations in Mongolia showed low genetic differentiation and weak geographical structure. In addition, Kazakh, Chinese (from Huanghuai and Leizhou), and Arabian (Turkish and Baladi breeds) goats had smaller genetic differentiation compared to Mongolian goats.Conclusion: In summary, we report novel information regarding genetic diversity, population structure, and origin of Mongolian goats. The findings obtained from this study reveal that abundant haplogroups (A to D) occur in goat populations in Mongolia, with high levels of haplotype and nucleotide diversity.


2019 ◽  
Vol 9 (8) ◽  
pp. 4362-4372 ◽  
Author(s):  
Jianxun Wu ◽  
Wenping Wang ◽  
Daogui Deng ◽  
Kun Zhang ◽  
Shuixiu Peng ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0152436 ◽  
Author(s):  
Wenping Wang ◽  
Kun Zhang ◽  
Daogui Deng ◽  
Ya-Nan Zhang ◽  
Shuixiu Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document