First Principles Study Of Electronic Structures Of Direct Band Gap Semiconductors, Graphite Fluorides

2002 ◽  
Vol 388 (1) ◽  
pp. 137-140
Author(s):  
Yoshiteru Takagi ◽  
Koichi Kusakabe
2020 ◽  
Vol 137 ◽  
pp. 106320 ◽  
Author(s):  
D.M. Hoat ◽  
Mosayeb Naseri ◽  
Nguyen N. Hieu ◽  
R. Ponce-Pérez ◽  
J.F. Rivas-Silva ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95846-95854 ◽  
Author(s):  
Wencheng Tang ◽  
Minglei Sun ◽  
Qingqiang Ren ◽  
Yajun Zhang ◽  
Sake Wang ◽  
...  

Using first principles calculations, we predicted that a direct-band-gap between 0.98 and 2.13 eV can be obtained in silicene by symmetrically and asymmetrically (Janus) functionalisation with halogen atoms and applying elastic tensile strain.


2016 ◽  
Vol 18 (38) ◽  
pp. 26736-26742 ◽  
Author(s):  
Hao Sun ◽  
Sankha Mukherjee ◽  
Chandra Veer Singh

Two new graphene allotropes, penta-graphene and phagraphene, have been proposed recently with unique electronic properties,e.g.quasi-direct band gap, direction-dependent Dirac cones and tunable Fermi velocities.


2014 ◽  
Vol 614 ◽  
pp. 70-74 ◽  
Author(s):  
Hai Ning Cao ◽  
Zhi Ya Zhang ◽  
Ming Su Si ◽  
Feng Zhang ◽  
Yu Hua Wang

First principles calculations based on the density functional theory (DFT) are employed to estimate the electronic structures of bilayer heterostructure of MoS2/WS2. The dependences of the band structures on external electric field and interlayer separation are evaluated. The external electric filed induces a semiconductor-metal transition. At the same time, a larger interlayer separation, corresponding to a weaker interlayer interaction, makes an indirect-direct band gap transition happen for the heterojunction. Our results demonstrate that electronic structure tailoring of two-dimensional layered materials should include both spatial symmetry control and interlayer vdW interactions engineering.


RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 83876-83879 ◽  
Author(s):  
Chengyong Xu ◽  
Paul A. Brown ◽  
Kevin L. Shuford

We have investigated the effect of uniform plane strain on the electronic properties of monolayer 1T-TiS2using first-principles calculations. With the appropriate tensile strain, the material properties can be transformed from a semimetal to a direct band gap semiconductor.


2019 ◽  
Vol 7 (12) ◽  
pp. 3569-3575 ◽  
Author(s):  
Shifeng Qian ◽  
Xiaowei Sheng ◽  
Xian Xu ◽  
Yuxiang Wu ◽  
Ning Lu ◽  
...  

Two-dimensional binary MX2 (M = Ni, Pd and Pt; X = P and As) exhibiting a beautiful pentagonal ring network is discussed through first principles calculations.


Sign in / Sign up

Export Citation Format

Share Document