3D and 2D left ventricular systolic function imaging – from ejection fraction to deformation. Cardiac resynchronization therapy – substudy

2015 ◽  
Vol 70 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Mariola Szulik ◽  
Anna ŒLiwiñska ◽  
Radoslaw Lenarczyk ◽  
Magdalena Szyma£A ◽  
Mariusz E. Kalinowski ◽  
...  
2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
C Jenei ◽  
E Papp ◽  
M Clemens ◽  
Z Csanadi

Abstract Background In approximately 30-40% of cases, the left ventricular systolic function does not improve following cardiac resynchronization therapy (CRT; non-responders). Currently, the role of right ventricular (RV) systolic function is not yet completely clear in the background. Our aim was to assess the RV systolic function with 3D echocardiography in CRT patients. Methods We selected 19 patients who received CRT in our department between May and June 2017, and whose 1-year follow-up data were available. We characterized several 2D parameters of RV systolic function, such as RV free wall strain (RV GLSFW), annular s’ wave velocity (TDI s), tricuspid annulus plane systolic excursion (TAPSE), RV fractional area change (RV FAC). A number of 3D parameters were also assessed, such as RV ejection fraction (EF), end-diastolic (EDV) and end-systolic (ESV) volumes, using a dedicated RV analysis software. Moreover, we measured the LV EF and considered the patients "responder", when the LV EF improved with at least 10% after CRT implantation. Results From 19 patients, 12 was identified as responders (R) and 7 as non-responders (NR). No significant difference was seen in the mean age of patients in the two groups (NR: 68 ± 6 year; R: 67 ± 9 year, p = 0.76), however, the proportion of male individuals was higher in the NR group (8/12 vs. 1/7). The RV EF was higher in the R group (41 ± 8% vs.29 ± 10%; p = 0.012), while the EDV or ESV did not differ between the two groups. The RV GLSFW (–21.2 ± 7% vs.–13.9 ± 7%, p = 0.045) and the TAPSE (16.8 ± 5 mm vs.11.4 ± 3 mm, P = 0.03) values were significantly different between the two groups. Based on logistic regression analysis, the RV EF was an independent predictor of non-respondence. Conclusions The lower RV EF indicates non-respondence to CRT, however, it is not associated with RV dilation, i.e.adverse remodelling. These results suggest mechanical abnormality of RV function in the background of impaired EF.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Gravellone ◽  
G Dell' Era ◽  
F De Vecchi ◽  
E Boggio ◽  
E Prenna ◽  
...  

Abstract Background Cardiac resynchronization therapy (CRT) is an established treatment for heart failure with reduced ejection fraction (HFrEF). However, one third of patients are “non responders”. Cathodic-anodal (CA) left ventricle (LV) capture is a multisite pacing occurring during CRT using both bipolar and quadripolar LV lead. It allows depolarization to arise simultaneously from the cathode and the anode of the bipole located on the LV epicardium, activating a larger volume of myocardium than cathodal pacing alone, thus potentially improving electromechanical synchrony (figure 1). We have previously proven that CA-LV stimulation is feasible and similar to bicathodic multipoint pacing (MPP) in terms of QRS wavefront activation. Purpose We aimed to evaluate both the acute intraprocedural haemodynamic and electrical effects of CA biventricular stimulation (CA-BS), comparing it with right-ventricle only pacing (Right Ventricle-Stimulation: RV-S), single-point CRT (Single Point-Biventricular Stimulation: SP-BS) and multipoint bicathodic biventricular stimulation (Multi Point-Biventricular Stimulation:MP-BS) in de novo CRT implants. Methods Ten patients candidates to CRT (LV ejection fraction ≤35% and left bundle branch block) received a quadripolar LV lead. Four pacing configurations were tested: RV-S, SP-BS, MP-BS and CA-BS, where cathode and the anode were the same electrodes used as cathodes in MP-BS. QRS duration by 12-lead ECG was defined as the time from the earliest ventricular deflection until the return to the isoelectric line. Haemodynamic assessment by radial artery catheterization using Pressure Recording Analytical Method processed the following parameters: dP/dT max (mmHg/msec), systolic arterial pressure (aPsys, mmHg), diastolic arterial pressure (aPdia, mmHg), mean arterial pressure (aPmean, mmHg), Cardiac Index (CI, l/min/m2), Stroke Volume Index (SVI, ml/min/m2). Results dP/dT max and aPmean increased significantly from RV-S to SP-BS (mean dP/dT max 0,82±0,28 versus 0,87±0,29 mmHg/msec, p=0,02; mean aPmean 89±19 versus 93±20 mmHg, p=0,01), but not from RV-S to MP-BS. Comparing RV-S to CA-BS, only aPmean exhibited a significant increase (mean aPmean 89±19 versus 92±20 mmHg, p=0,01). There were no haemodynamic differences between SP-BS, MP-BS and CA-BS. QRS duration reduced significantly from RV-S (167±10 msec) to each biventricular stimulation (135±14 msec, p=0,0002 for SP-BS; 130±17 msec, p=0,0001 for MP-BS; 129±18 msec, p=0,0002 for CA-BS) and from SP-BS to MP-BS and CA-BS (p=0,03 for both), whereas there were no difference comparing MP-BS and CA-BS. Conclusions CA-LV stimulation is not superior to single-point CRT in terms of acute haemodynamic performance, whereas it reduces the duration of ventricular electrical activation, showing an electrohaemodynamic mismatch. Long-term studies are needed to evaluate if acute electrical benefits of CA stimulation can predict chronic benefits, in terms of reverse cardiac remodelling. Cathodic-anodal left ventricular capture Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document