Improvement of Mechanical Properties of Coir Fiber (Cocus nucifera) with 2-Hydroxyethyl Methacrylate (HEMA) by Photocuring

2003 ◽  
Vol 42 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Mubarak A. Khan ◽  
M. S. Siraj ◽  
M. Mizanur Rahman ◽  
Laurence T. Drzal
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1128
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Agnė Kairytė

In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.


2014 ◽  
Vol 1611 ◽  
pp. 95-104 ◽  
Author(s):  
Nadira Mathura ◽  
Duncan Cree ◽  
Ryan P. Mulligan

ABSTRACTIn many tropical countries coconut (coir) fiber production is a major source of income for rural communities. The Caribbean has an abundance of coconuts but research into utilizing its by-products is limited. Environmentally friendly coir fibers are natural polymers generally discarded as waste material in this region. Research has shown that coir fiber from other parts of the world has successfully been recycled. This paper therefore investigates the mechanical properties of Caribbean coir fiber for potential applications in civil engineering.Approximately four hundred fibers were randomly taken from a coir fiber stack and subjected to retting in both distilled and saline water media. The mechanical properties of both the retted and unretted coir fibers were evaluated at weekly increments for a period of 3 months. Tensile strength test, x-ray diffraction analysis and scanning electron micrographs were used to assess trends and relationships between fiber gauge lengths, diameter, tensile strength and Young’s modulus. Diameters ranged between 0.11 mm-0.46 mm, while fiber samples were no longer than 250 mm in length. The tensile strength and strain at break decreased as the gauge length increased for both unretted and retted fibers. The opposite occurred for the relationship between the gauge length and Young’s modulus. Additionally, the tensile strength and modulus decreased as the fiber diameter increased. Neither distilled nor saline water improved the coir fiber’s crystalline index. Scanning electron micrographs qualitatively assessed fiber surfaces and captured necking and microfibril degradation at the fractured ends.The analysis revealed that the tensile strength, modulus, strain at break and crystallinity properties of the Caribbean coir fibers were comparable to commercially available coir fiber which are currently being used in many building applications.


2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


2008 ◽  
Vol 4 (3) ◽  
pp. 745-755 ◽  
Author(s):  
Jose-Fernando Rosa dos Santos ◽  
Ramiro Couceiro ◽  
Angel Concheiro ◽  
Juan-Jose Torres-Labandeira ◽  
Carmen Alvarez-Lorenzo

2010 ◽  
Vol 146-147 ◽  
pp. 1549-1552
Author(s):  
Jia Yao ◽  
Ying Cheng Hu ◽  
Wei Lu ◽  
Jin Li

SEM observations of coir fiber microstructure have been carried out. Uneven surface characteristics are conducive to the bonding between coir fibers and resin materials. The unique advantages of coir fiber have been verified. Doing orthogonal experiment design for coir fiberboard, the coir fiberboard can meet the mechanical properties of National Standards of China. The various factors optimization plan on the performance of coir fiberboard has been obtained. FFT nondestructive testing has been done for the coir fiberboard. Nondestructive testing results show that the good correlation exists between dynamic mechanical properties and the static test results.


Sign in / Sign up

Export Citation Format

Share Document