coir fibers
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Cai Jiafeng ◽  
Qiuying Li ◽  
Chifei Wu

Abstract In this work, a hybrid coating (TSMA) was produced using tetraethyl orthosilicate (TEOS)/KH550/Styrene maleic anhydride copolymer (SMA) as raw materials. The coating was afterwards applied to modify recycled coir (r-coir) fibers via dip-coating. R-coir fibers reinforced ABS composites were then prepared and the reinforcing effect of fibers on the composite structure was investigated, as well. The r-coir fibers coated with TSMA were hydrolyzed in air for 3 days. The SiO2 particles produced by sol-gel reaction of TEOS were used to connect KH550 and SMA to the surface of the fibers and form an organic-inorganic ‘armor’ structure. The successful surface modification of the r-coir fibers was proved via FTIR spectroscopic study and the improvement of their decomposition temperature was evidenced by TGA. Furthermore, the homogeneous dispersion of TSMA on the surface of r-coir fibers was observed via SEM. In addition, the tensile strength of single fibers was found to increase by 36.1%. According to the results, TSMA can be successfully homogenized on the fiber surface, enabling one to repair the damaged areas and improve the tensile strength of single fibers. Besides, good compatibility between r-coir fibers and ABS was revealed by contact angle measurements. Furthermore, the bending strength and elastic modulus of TSMA-modified r-coir fibers/ABS composites were improved by 6% and 27%, respectively. Therefore, the method of plant fiber modification proposed in present work provides a reliable way for effective reuse of r-coir fibers.


2021 ◽  
Vol 33 (11) ◽  
pp. 04021293
Author(s):  
R. Sri Bhanupratap Rathod ◽  
B. V. Venkatarama Reddy

2021 ◽  
Vol 301 ◽  
pp. 124117
Author(s):  
K. Ganesan ◽  
C. Kailasanathan ◽  
N. Rajini ◽  
Sikiru O. Ismail ◽  
Nadir Ayrilmis ◽  
...  

2021 ◽  
Author(s):  
Duncan Bryant ◽  
Mary Bryant ◽  
Jeremy Sharp ◽  
Gary Bell ◽  
Christine Moore

Vegetation is believed to increase the stability of dunes during wave attack, but limited data is available. A physical model study was performed to evaluate changes in the dune stability with and without biomass, both above and belowground. The above and belowground biomass was modeled using wooden dowels and coir fibers, respectively. For both the collision and overwash storm impact regimes, the results of this study clearly demonstrate that the inclusion of biomass in the model dune reduces the erosion and overwash. The combination of both above and belowground biomass was the most effective at reducing erosion followed by belowground biomass, with aboveground biomass providing the smallest benefit regardless of the wave condition and water level. Additionally, the overwash of sediment and water was decreased with the inclusion of biomass, following the same trends as the erosion. As the dune eroded, the storm impact regime transitioned from collision to overwash. The inclusion of biomass delays this transition in storm impact regime, providing greater protection to coastal communities. This study highlights the need to consider dune vegetation for dune construction and coastal planning.


2021 ◽  
pp. 1-9
Author(s):  
Simimol Ansera ◽  
Ajith Sudhakaran ◽  
Anita Ravindranath
Keyword(s):  

2021 ◽  
Vol 22 (6) ◽  
pp. 55-65
Author(s):  
Prasad Dharmaratne ◽  
Harsha Galabada ◽  
Randika Jayasinghe ◽  
Renuka Nilmini ◽  
Rangika Halwatura

2021 ◽  
Vol 26 (1) ◽  
pp. 64-71
Author(s):  
Harveth Gil ◽  
Alejandro Alberto Zuleta ◽  
David Esteban Reyes

Coir fiber has been examined for their suitability as reinforcement of concrete. Mechanical properties and sustainability aspects of concrete composites were estimated after 7. 14, and 28 days of curing. Natural reinforcement of 0.46 and 0.62% by weight of coir fiber was added. Fibers were analyzed by means of scanning electron microscope (SEM). Besides, an Eco-audit tool has been used to estimate energy and carbon emission of material, manufacturing, transportation, and disposal phases. It was found that fibers additions lowered the compressive strength compared to plain concrete. However, failures of the composites exhibited good post-cracking behavior. The use of vegetable fibers affects positively the life cycle of the material. Eco-audit results indicate that there is a potential to reduce between 9.15% and 13.35% of embodied energy and between 9.61% and 13.94% of CO2 during the material production phase. These suggest that coir fibers could be useful from the environmental view, although more studies regarding their durability are needed.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1128
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Agnė Kairytė

In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 823
Author(s):  
Cinthia Maia Pederneiras ◽  
Rosário Veiga ◽  
Jorge de Brito

Coir fiber is a by-product waste generated in large scale. Considering that most of these wastes do not have a proper disposal, several applications to coir fibers in engineering have been investigated in order to provide a suitable use, since coir fibers have interesting properties, namely high tensile strength, high elongation at break, low modulus of elasticity, and high abrasion resistance. Currently, coir fiber is widely used in concrete, roofing, boards and panels. Nonetheless, only a few studies are focused on the incorporation of coir fibers in rendering mortars. This work investigates the feasibility to incorporate coir fibers in rendering mortars with two different binders. A cement CEM II/B-L 32.5 N was used at 1:4 volumetric cement to aggregate ratio. Cement and air-lime CL80-S were used at a volumetric ratio of 1:1:6, with coir fibers were produced with 1.5 cm and 3.0 cm long fibers and added at 10% and 20% by total mortar volume. Physical and mechanical properties of the coir fiber-reinforced mortars were discussed. The addition of coir fibers reduced the workability of the mortars, requiring more water that affected the hardened properties of the mortars. The modulus of elasticity and the compressive strength of the mortars with coir fibers decreased with increase in fiber volume fraction and length. Coir fiber’s incorporation improved the flexural strength and the fracture toughness of the mortars. The results emphasize that the cement-air-lime based mortars presented a better post-peak behavior than that of the cementitious mortars. These results indicate that the use of coir fibers in rendering mortars presents a potential technical and sustainable feasibility for reinforcement of cement and cement-air-lime mortars.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 699
Author(s):  
Xiaoxiao Zhang ◽  
Leo Pel ◽  
Florent Gauvin ◽  
David Smeulders

Due to the requirement for developing more sustainable constructions, natural fibers from agricultural wastes, such as coir fibers, have been increasingly used as an alternative in concrete composites. However, the influence of coir fibers on the hydration and shrinkage of cement-based materials is not clear. In addition, limited information about the reinforcing mechanisms of coir fibers in concrete can be found. The goal of this research is to investigate the effects of coir fibers on the hydration reaction, microstructure, shrinkages, and mechanical properties of cement-based light-weight aggregate concrete (LWAC). Treatments on coir fibers, namely Ca(OH)2 and nano-silica impregnation, are applied to further improve LWAC. Results show that leachates from fibers acting as a delayed accelerator promote cement hydration, and entrained water by fibers facilitates cement hydration during the whole process. The drying shrinkage of LWAC is increased by adding fibers, while the autogenous shrinkage decreases. The strength and toughness of LWAC are enhanced with fibers. Finally, three reinforcement mechanisms of coir fibers in cement composites are discussed.


Sign in / Sign up

Export Citation Format

Share Document