scholarly journals Subaxolemmal cytoskeleton in squid giant axon. I. Biochemical analysis of microtubules, microfilaments, and their associated high-molecular-weight proteins.

1986 ◽  
Vol 102 (5) ◽  
pp. 1699-1709 ◽  
Author(s):  
T Kobayashi ◽  
S Tsukita ◽  
S Tsukita ◽  
Y Yamamoto ◽  
G Matsumoto

Using the squid giant axon, we analyzed biochemically the molecular organization of the axonal cytoskeleton underlying the axolemma (subaxolemmal cytoskeleton). The preparation enriched in the subaxolemmal cytoskeleton was obtained by squeezing out the central part of the axoplasm using a roller. The electrophoretic banding pattern of the subaxolemmal cytoskeleton was characterized by large amounts of two high-molecular-weight (HMW) proteins (260 and 255 kD). The alpha, beta-tubulin, actin, and some other proteins were also its major constituents. The 260-kD protein is known to play an important role in maintaining the excitability of the axolemma (Matsumoto, G., M. Ichikawa, A. Tasaki, H. Murofushi, and H. Sakai, 1983, J. Membr. Biol., 77:77-91) and was recently designated "axolinin" (Sakai, H., G. Matsumoto, and H. Murofushi, 1985, Adv. Biophys., 19:43-89). We purified axolinin and the 255-kD protein in their native forms and further characterized their biochemical properties. The purified axolinin was soluble in 0.6 M NaCl solution but insoluble in 0.1 M NaCl solution. It co-sedimented with microtubules but not with actin filaments. In low-angle rotary-shadowing electron microscopy, the axolinin molecule in 0.6 M NaCl solution looked like a straight rod approximately 105 nm in length with a globular head at one end. On the other hand, the purified 255-kD protein was soluble in both 0.1 and 0.6 M NaCl solution and co-sedimented with actin filaments but not with microtubules. The 255-kD protein molecule appeared as a characteristic horseshoe-shaped structure approximately 35 nm in diameter. Furthermore, the 255-kD protein showed no cross-reactivity to the anti-axolinin antibody. Taken together, these characteristics lead us to conclude that the subaxolemmal cytoskeleton in the squid giant axon is highly specialized, and is mainly composed of microtubules and a microtubule-associated HMW protein (axolinin), and actin filaments and an actin filament-associated HMW protein (255-kD protein).

2000 ◽  
Vol 14 (1) ◽  
pp. 69-75 ◽  
Author(s):  
G.D. Offner ◽  
R.F. Troxler

The existence of high-molecular-weight glycoproteins in saliva and salivary secretions has been recognized for nearly 30 years. These proteins, called mucins, are essential for oral health and perform many diverse functions in the oral cavity. Mucins have been intensively studied, and much has been learned about their biochemical properties and their interactions with oral micro-organisms and other salivary proteins. In the past several years, the major high-molecular-weight mucin in salivary secretions has been identified as MUC5B, one of a family of 11 human mucin gene products expressed in tissue-specific patterns in the gastrointestinal, respiratory, and reproductive tracts. MUC5B is one of four gel-forming mucins which exist as multimeric proteins with molecular weights greater than 20-40 million daltons. The heavily glycosylated mucin multimers form viscous layers which protect underlying epithelial surfaces from microbial, mechanical, and chemical assault. Another class of mucin molecules, the membrane-bound mucins, is structurally and functionally distinct from the gel-forming mucins. These proteins do not form multimers and can exist as both secreted and membrane-bound forms, with the latter anchored to epithelial cell membranes through a short membrane-spanning domain. In the present work, we show that two of the membrane-bound mucins, MUC1 and MUC4, are expressed in all major human salivary glands as well as in buccal epithelial cells. While the functions of these mucins in the oral environment are not understood, it is possible that they form a structural framework on the cell surface which not only is cytoprotective, but also may serve as a scaffold upon which MUC5B, and possibly other salivary proteins, assemble.


1995 ◽  
Vol 108 (3) ◽  
pp. 1117-1125
Author(s):  
A. Moscatelli ◽  
C. Del Casino ◽  
L. Lozzi ◽  
G. Cai ◽  
M. Scali ◽  
...  

Nicotiana tabacum pollen tubes contain two high molecular weight polypeptides (about 400 kDa), which are specifically expressed during pollen germination and pollen tube growth in BK medium. The high molecular weight doublet resembles the dynein heavy chains in some biochemical properties. Sedimentation profiles of pollen tube extracts show that the high molecular weight bands have sedimentation coefficients of 22 S and 12 S, respectively. ATPase assay of sedimentation fractions shows an activity ten times higher when stimulated by the presence of bovine brain microtubules in fractions containing the 22 S high molecular weight polypeptide. Both these high molecular weight polypeptides can bind microtubules in an ATP-dependent fashion. A mouse antiserum to a synthetic peptide reproducing the sequence of the most conserved ATP-binding site among dynein heavy chains recognized the two high molecular weight polypeptides. Therefore these polypeptides have sequences immunologically related to the ATP binding sites of dynein heavy chains.


1986 ◽  
Vol 102 (5) ◽  
pp. 1710-1725 ◽  
Author(s):  
S Tsukita ◽  
S Tsukita ◽  
T Kobayashi ◽  
G Matsumoto

In the preceding paper (Kobayashi, T., S. Tsukita, S. Tsukita, Y. Yamamoto, and G. Matsumoto, 1986, J. Cell Biol., 102:1710-1725), we demonstrated biochemically that the subaxolemmal cytoskeleton of the squid giant axon was highly specialized and mainly composed of tubulin, actin, axolinin, and a 255-kD protein. In this paper, we analyzed morphologically the molecular organization of the subaxolemmal cytoskeleton in situ. For thin section electron microscopy, the subaxolemmal cytoskeleton was chemically fixed by the intraaxonal perfusion of the fixative containing tannic acid. With this fixation method, the ultrastructural integrity was well preserved. For freeze-etch replica electron microscopy, the intraaxonally perfused axon was opened and rapidly frozen by touching its inner surface against a cooled copper block (4 degrees K), thus permitting the direct stereoscopic observation of the cytoplasmic surface of the axolemma. Using these techniques, it became clear that the major constituents of the subaxolemmal cytoskeleton were microfilaments and microtubules. The microfilaments were observed to be associated with the axolemma through a specialized meshwork of thin strands, forming spot-like clusters just beneath the axolemma. These filaments were decorated with heavy meromyosin showing a characteristic arrowhead appearance. The microtubules were seen to run parallel to the axolemma and embedded in the fine three-dimensional meshwork of thin strands. In vitro observations of the aggregates of axolinin and immunoelectron microscopic analysis showed that this fine meshwork around microtubules mainly consisted of axolinin. Some microtubules grazed along the axolemma and associated laterally with it through slender strands. Therefore, we were led to conclude that the axolemma of the squid giant axon was specialized into two domains (microtubule- and microfilament-associated domains) by its underlying cytoskeletons.


1988 ◽  
Vol 106 (6) ◽  
pp. 1973-1983 ◽  
Author(s):  
S Yamashiro-Matsumura ◽  
F Matsumura

Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83-kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.


1985 ◽  
Vol 3 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Johannes H.E. Moonen ◽  
Auke Scheepstra ◽  
Aris Graveland

2005 ◽  
Vol 15 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Christine Hafner ◽  
Stefan Wagner ◽  
Dorothee Allwardt ◽  
Angelika B. Riemer ◽  
Otto Scheiner ◽  
...  

1980 ◽  
Vol 191 (1) ◽  
pp. 239-246 ◽  
Author(s):  
J Lumsden ◽  
J Ham ◽  
M L Ellison

Studies on the high-molecular-weight immunoreactive calcitonin produced ectopically in culture by an epidermoid bronchial carcinoma cell line are reported. In cell-exposed medium, the principal component has a molecular weight of 40000 and molecules of mol.wts. 13000 and 10000 also occur. Only a trace amount of material co-eluting with 35000-mol.wt. human calcitonin is detectable. None of the calcitonins show cross-reactivity with anti-corticotropin serum. The 40000-mol.wt. immunoreactive calcitonin is readily proteolysed to the 13000- and 10000-mol.wt. components, but the 10000-mol.wt. component behaves as a comparatively stable ‘core’ molecule. By using immunoprecipitation and high-pressure liquid chromatography (h.p.l.c.), it is possible to prepare radiochemically homogeneous 10000-mol.wt. immunoreactive calcitonin from cells grown in the presence of individual 35S- or 3H-labelled amino acids. Peptide mapping of enzymic digests of this material by h.p.l.c. shows that it contains peptides in common with synthetic human calcitonin.


1983 ◽  
Vol 96 (1) ◽  
pp. 76-83 ◽  
Author(s):  
L A Greene ◽  
R K Liem ◽  
M L Shelanski

PC12 rat pheochromocytoma cells respond to nerve growth factor (NGF) protein by shifting from a chromaffin-cell-like phenotype to a neurite-bearing sympathetic-neuron-like phenotype. Comparison of the phosphoprotein patterns of the cells by SDS PAGE after various times of NGF treatment revealed a high molecular weight (Mr greater than or approximately 300,000) band whose relative intensity progressively increased beyond 2 d of NGF exposure. This effect was blocked by inhibitors of RNA synthesis and did not require neurite outgrowth or substrate attachment. The enhancement by NGF occurred in serum-free medium and was not produced by exposure to epidermal growth factor, insulin, dibutyryl cAMP, or dexamethasone. Several different types of experiments indicated that this phosphoprotein corresponds to a high molecular weight (HMW) microtubule-associated protein (MAP). These included cross-reactivity with antiserum against brain HMW MAPs, co-cycling with microtubules and co-assembly with tubulin in the presence of taxol. The affected species also co-migrated in SDS PAGE gels with brain MAP1 and, unlike MAP2, precipitated upon boiling. Studies with [35S]-methionine-labeled PC12 cells indicated that at least a significant proportion of this effect of NGF was due to increased levels of protein rather than to mere enhancement of phosphorylation. On the basis of the apparent effects of MAPs on the formation and stabilization of microtubules and of the importance of microtubules in production and maintenance of neurites, it is proposed that induction of a HMW MAP may be one of the steps in the mechanism whereby NGF promotes neurite outgrowth. Furthermore, these findings may lead to an understanding of the role of MAP1 in the nervous system.


Sign in / Sign up

Export Citation Format

Share Document