scholarly journals Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions.

1986 ◽  
Vol 103 (1) ◽  
pp. 145-158 ◽  
Author(s):  
S Hoffman ◽  
D R Friedlander ◽  
C M Chuong ◽  
M Grumet ◽  
G M Edelman

Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N-CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti-Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio.(ABSTRACT TRUNCATED AT 400 WORDS)

1991 ◽  
Vol 115 (4) ◽  
pp. 1113-1126 ◽  
Author(s):  
T B Kuhn ◽  
E T Stoeckli ◽  
M A Condrau ◽  
F G Rathjen ◽  
P Sonderegger

Axonin-1 is an axon-associated cell adhesion molecule with dualistic expression, one form being glycophosphatidylinositol-anchored to the axonal membrane, the other secreted from axons in a soluble form. When presented as a substratum for neuronal cultures it strongly promotes neurite outgrowth from chicken embryonic dorsal root ganglia neurons. In this study, the axon-associated cell adhesion molecule G4, which is identical with Ng-CAM and 8D9, and homologous or closely related to L1 of the mouse and NILE of the rat, was investigated with respect to a receptor function for axonin-1. Using fluorescent microspheres with covalently coupled axonin-1 or L1(G4) at their surface we showed that these proteins bind to each other. Within the sensitivity of this microsphere assay, no interaction of axonin-1 with itself could be detected. Axonin-1-coated microspheres also bound to the neurites of cultured dorsal root ganglia neurons. This interaction was exclusively mediated by L1(G4), as indicated by complete binding suppression by monovalent anti-L1(G4) antibodies. The interaction between neuritic L1(G4) and immobilized axonin-1 was found to mediate the promotion of neurite growth on axonin-1, as evidenced by the virtually complete arrest of neurite outgrowth in the presence of anti-L1(G4) antibodies. Convincing evidence has recently been presented that neurite growth on L1(8D9) is mediated by the homophilic binding of neuritic L1(G4) (1989. Neuron. 2: 1597-1603). Thus, both L1(G4)- and axonin-1-expressing axons may serve as "substrate pathways" for the guidance of following axons expressing L1(G4) into their target area. Conceivably, differences in the concentration of axonin-1 and L1(G4), and/or modulatory influences on their specific binding parameters in leading pathways and following axons could represent elements in the control of axonal pathway selection.


1988 ◽  
Vol 106 (2) ◽  
pp. 487-503 ◽  
Author(s):  
M Grumet ◽  
GM Edelman

The neuron-glia cell adhesion molecule (Ng-CAM) is present in the central nervous system on postmitotic neurons and in the periphery on neurons and Schwann cells. It has been implicated in binding between neurons and between neurons and glia. To understand the molecular mechanisms of Ng-CAM binding, we analyzed the aggregation of chick Ng-CAM either immobilized on 0.5-micron beads (Covaspheres) or reconstituted into liposomes. The results were correlated with the binding of these particles to different types of cells as well as with cell-cell binding itself. Both Ng-CAM-Covaspheres and Ng-CAM liposomes individually self-aggregated, and antibodies against Ng-CAM strongly inhibited their aggregation; the rate of aggregation increased approximately with the square of the concentration of the beads or the liposomes. Much higher rates of aggregation were observed when the ratio of Ng-CAM to lipid in the liposome was increased. Radioiodinated Ng-CAM on Covaspheres and in liposomes bound both to neurons and to glial cells and in each case antibodies against Ng-CAM inhibited 50-90% of the binding. Control preparations of fibroblasts and meningeal cells did not exhibit significant binding. Adhesion between neurons and glia within and across species (chick and mouse) was explored in cellular assays after defining markers for each cell type, and optimal conditions of shear, temperature, and cell density. As previously noted using chick cells (Grumet, M., S. Hoffman, C.-M. Chuong, and G. M. Edelman. 1984 Proc. Natl. Acad. Sci. USA. 81:7989-7993), anti-Ng-CAM antibodies inhibited neuron-neuron and neuron-glia binding. In cross-species adhesion assays, binding of chick neurons to mouse astroglia and binding of mouse neurons to chick astroglia were both inhibited by anti-Ng-CAM antibodies. To identify whether the cellular ligands for Ng-CAM differed for neuron-neuron and neuron-glia binding, cells were preincubated with specific antibodies, the antibodies were removed by washing, and Ng-CAM-Covasphere binding was measured. Preincubation of neurons with anti-Ng-CAM antibodies inhibited Ng-CAM-Covasphere binding but similar preincubation of astroglial cells did not inhibit binding. In contrast, preincubation of astroglia with anti-astroglial cell antibodies inhibited binding to these cells but preincubation of neurons with these antibodies had no effect. Together with the data on Covaspheres and liposome aggregation, these findings suggested that Ng-CAM-Covaspheres bound to Ng-CAM on neurons but bound to different molecules on astroglia.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 686 ◽  
pp. 87-93 ◽  
Author(s):  
Kasumi Higashine ◽  
Kei Hashimoto ◽  
Emi Tsujimoto ◽  
Yuko Oishi ◽  
Yokichi Hayashi ◽  
...  

1998 ◽  
Vol 9 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Paul M. Yip ◽  
Xiaoning Zhao ◽  
Anthony M.P. Montgomery ◽  
Chi-Hung Siu

The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3integrin on neuronal cells.


Sign in / Sign up

Export Citation Format

Share Document