scholarly journals Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms

1988 ◽  
Vol 106 (2) ◽  
pp. 487-503 ◽  
Author(s):  
M Grumet ◽  
GM Edelman

The neuron-glia cell adhesion molecule (Ng-CAM) is present in the central nervous system on postmitotic neurons and in the periphery on neurons and Schwann cells. It has been implicated in binding between neurons and between neurons and glia. To understand the molecular mechanisms of Ng-CAM binding, we analyzed the aggregation of chick Ng-CAM either immobilized on 0.5-micron beads (Covaspheres) or reconstituted into liposomes. The results were correlated with the binding of these particles to different types of cells as well as with cell-cell binding itself. Both Ng-CAM-Covaspheres and Ng-CAM liposomes individually self-aggregated, and antibodies against Ng-CAM strongly inhibited their aggregation; the rate of aggregation increased approximately with the square of the concentration of the beads or the liposomes. Much higher rates of aggregation were observed when the ratio of Ng-CAM to lipid in the liposome was increased. Radioiodinated Ng-CAM on Covaspheres and in liposomes bound both to neurons and to glial cells and in each case antibodies against Ng-CAM inhibited 50-90% of the binding. Control preparations of fibroblasts and meningeal cells did not exhibit significant binding. Adhesion between neurons and glia within and across species (chick and mouse) was explored in cellular assays after defining markers for each cell type, and optimal conditions of shear, temperature, and cell density. As previously noted using chick cells (Grumet, M., S. Hoffman, C.-M. Chuong, and G. M. Edelman. 1984 Proc. Natl. Acad. Sci. USA. 81:7989-7993), anti-Ng-CAM antibodies inhibited neuron-neuron and neuron-glia binding. In cross-species adhesion assays, binding of chick neurons to mouse astroglia and binding of mouse neurons to chick astroglia were both inhibited by anti-Ng-CAM antibodies. To identify whether the cellular ligands for Ng-CAM differed for neuron-neuron and neuron-glia binding, cells were preincubated with specific antibodies, the antibodies were removed by washing, and Ng-CAM-Covasphere binding was measured. Preincubation of neurons with anti-Ng-CAM antibodies inhibited Ng-CAM-Covasphere binding but similar preincubation of astroglial cells did not inhibit binding. In contrast, preincubation of astroglia with anti-astroglial cell antibodies inhibited binding to these cells but preincubation of neurons with these antibodies had no effect. Together with the data on Covaspheres and liposome aggregation, these findings suggested that Ng-CAM-Covaspheres bound to Ng-CAM on neurons but bound to different molecules on astroglia.(ABSTRACT TRUNCATED AT 400 WORDS)

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Soo-Jung Kim ◽  
Ji-Hyun Park ◽  
Kyung-Hyun Kim ◽  
Woo-Ram Lee ◽  
Sok Cheon Pak ◽  
...  

Apamin, a peptide component of bee venom (BV), has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip) injections of lipopolysaccharide (LPS, 2 mg/kg) to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg) was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF)-α, vascular cell adhesion molecule (VCAM)-1, and intracellular cell adhesion molecule (ICAM)-1, as well as the nuclear factor kappa B (NF-κB) signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca2+levels, and TNF-αin the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis.


2020 ◽  
Vol 295 (49) ◽  
pp. 16691-16699
Author(s):  
Razie Amraei ◽  
Tooba Alwani ◽  
Rachel Xi-Yeen Ho ◽  
Zahra Aryan ◽  
Shawn Wang ◽  
...  

Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220. The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.


1991 ◽  
Vol 112 (5) ◽  
pp. 1017-1029 ◽  
Author(s):  
M P Burgoon ◽  
M Grumet ◽  
V Mauro ◽  
G M Edelman ◽  
B A Cunningham

The neuron-glia cell adhesion molecule (Ng-CAM) mediates both neuron-neuron and neuron-glia adhesion; it is detected on SDS-PAGE as a predominant 135-kD glycoprotein, with minor components of 80, 190, and 210 kD. We have isolated cDNA clones encoding the entire sequence of chicken Ng-CAM. The predicted extracellular region includes six immunoglobulin-like domains followed by five fibronectin-type III repeats, structural features that are characteristic of several neural CAMs of the N-CAM superfamily. The amino acid sequence of chicken Ng-CAM is most similar to that of mouse L1 but the overall identity is only 40% and Ng-CAM contains a short fibronectin-like segment with an RGD sequence that has no counterpart in L1. These findings suggest that Ng-CAM and L1 may not be equivalent molecules in chicken and mouse. The amino-terminal sequences of the 210-, 190-, and 135-kD components of Ng-CAM are all the same as the predicted amino terminus of the molecule, whereas the 80-kD component begins within the third fibronectin repeat. The cDNA sequence is continuous across the junction between the 135- and 80-kD components, and a single 170-kD Ng-CAM polypeptide was isolated from tunicamycin-treated cells. In addition, all cDNA probes hybridized on Northern blots to a 6-kb RNA, and most hybridized to single bands on Southern blots. These results indicate that the Ng-CAM components are derived from a single polypeptide encoded by a single gene, and that the 135- and 80-kD components are generated from the 210/190-kD species by proteolytic cleavage. The 135-kD component contains most of the extracellular region including all of the immunoglobulin-like domains. It has no transmembrane segment, but it is tightly associated with the membrane. The 80-kD component contains two and a half type III repeats plus the RGD-containing segment, as well as the single transmembrane and cytoplasmic domains. These structural features of Ng-CAM provide a framework for understanding its multiple functions in neuron-neuron interactions, neurite fasciculation, and neuron-glia interactions.


2000 ◽  
Vol 150 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Steven Tait ◽  
Frank Gunn-Moore ◽  
J. Martin Collinson ◽  
Jeffery Huang ◽  
Catherine Lubetzki ◽  
...  

Two major isoforms of the cell adhesion molecule neurofascin NF186 and NF155 are expressed in the central nervous system (CNS). We have investigated their roles in the assembly of the node of Ranvier and show that they are targeted to distinct domains at the node. At the onset of myelination, NF186 is restricted to neurons, whereas NF155 localizes to oligodendrocytes, the myelin-forming glia of the CNS. Coincident with axon ensheathment, NF155 clusters at the paranodal regions of the myelin sheath where it localizes in apposition to the axonal adhesion molecule paranodin/contactin-associated protein (Caspr1), which is a constituent of the septate junction-like axo-glial adhesion zone. Immunoelectron microscopy confirmed that neurofascin is a glial component of the paranodal axo-glial junction. Concentration of NF155 with Caspr1 at the paranodal junctions of peripheral nerves is also a feature of Schwann cells. In Shiverer mutant mice, which assemble neither compact CNS myelin nor normal paranodes, NF155 (though largely retained at the cell body) is also distributed at ectopic sites along axons, where it colocalizes with Caspr1. Hence, NF155 is the first glial cell adhesion molecule to be identified in the paranodal axo-glial junction, where it likely interacts with axonal proteins in close association with Caspr1.


2021 ◽  
Author(s):  
Linzi Sun ◽  
Razie Amraei ◽  
Nader Rahimi

ABSTRACTThe cell adhesion molecule immunoglobulin and proline-rich receptor-1 (IGPR-1) regulates various critical cellular processes including, cell-cell adhesion, mechanosensing and autophagy. However, the molecular mechanisms governing IGPR-1 cell surface expression levels remains unknown. In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1. Over-expression of wild-type NEDD4 downregulated IGPR-1 and deletion of WW domains (1-4) of NEDD4 revoked its effects on IGPR-1. Similarly, knockdown of NEDD4 increased IGPR-1 levels in A375 melanoma cells. Furthermore, deletion of 57 amino acids encompassing polyproline rich (PPR) motif on the C-terminus of IGPR-1 nullified the binding of NEDD4 with IGPR-1. Moreover, we demonstrate that NEDD4 promotes K48- and K63-dependent polyubiquitination of IGPR-1. The NEDD4-mediated polyubiquitination of IGPR-1 stimulated lysosomal degradation of IGPR-1 as the treatment of cells with the lysosomal inhibitors, bafilomycine and ammonium chloride increased IGPR-1 levels in the HEK-293 cells ectopically expressing IGPR-1 and in multiple human skin melanoma cell lines. Hence, these findings suggest that ubiquitin E3 ligase NEDD4 is a key regulator of IGPR-1 with a significant implication in the therapeutic targeting of IGPR-1.


2002 ◽  
Vol 9 (3) ◽  
pp. 147-159 ◽  
Author(s):  
K. Touyarot ◽  
C. Sandi

Existing evidence indicates that 21-days exposure of rats to restraint stress induces dendritic atrophy in pyramidal cells of the hippocampus. This phenomenon has been related to altered performance in hippocampal-dependent learning tasks. Prior studies have shown that hippocampal expression of cell adhesion molecules is modified by such stress treatment, with the neural cell adhesion molecule (NCAM) decreasing and L1 increasing, their expression, at both the mRNA and protein levels. Given that NCAM comprises several isoforms, we investigated here whether chronic stress might differentially affect the expression of the three major isoforms (NCAM-120, NCAM-140, NCAM-180) in the hippocampus. In addition, as glucocorticoids have been implicated in the deleterious effects induced by chronic stress, we also evaluated plasma corticosterone levels and the hippocampal expression of the corticosteroid mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The results showed that the protein concentration of the NCAM-140 isoform decreased in the hippoampus of stressed rats. This effect was isoform-specific, because NCAM-120 and NCAM-180 levels were not significantly modified. In addition, whereas basal levels of plasma corticosterone tended to be increased, MR and GR concentrations were not significantly altered. Although possible changes in NCAM-120, NCAM-180 and corticosteroid receptors at earlier time points of the stress period cannot be ignored; this study suggests that a down-regulation of NCAM-140 might be implicated in the structural alterations consistently shown to be induced in the hippocampus by chronic stress exposure. As NCAM-140 is involved in cell-cell adhesion and neurite outgrowth, these findings suggest that this molecule might be one of the molecular mechanisms involved in the complex interactions among neurodegeneration-related events.


Sign in / Sign up

Export Citation Format

Share Document