scholarly journals 270K microtubule-associated protein cross-reacting with anti-MAP2 IgG in the crayfish peripheral nerve axon.

1986 ◽  
Vol 103 (1) ◽  
pp. 33-39 ◽  
Author(s):  
N Hirokawa

MAPs (microtubule-associated proteins) were isolated from crayfish walking leg nerves. A major MAP was identified as a high molecular weight protein (270K). This protein co-migrated with mammalian MAP2, stimulated the polymerization of rat brain tubulin into microtubules, and was heat resistant. Rotary shadowing revealed that the 270K MAP is a long thin flexible structure. It formed cross-bridges of fine strands, linking microtubules with each other in vitro. These strands resemble the cross-bridges between microtubules observed in the crayfish axon permeabilized with saponin and quick-frozen, deep-etched. Antibodies against mammalian MAP2 cross-reacted with this crayfish MAP and stained the axoplasm of the walking leg nerves. Thus MAPs, especially the 270K MAP, appear to be a major component of the cross-linking strands between microtubules observed in the crayfish axon.

1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


1992 ◽  
Vol 70 (10-11) ◽  
pp. 1055-1063 ◽  
Author(s):  
Jianshe Zhang ◽  
Thomas H. MacRae

A 49 kilodalton (kDa) protein, previously proposed to cross-link microtubules, was purified to apparent homogeneity from cell-free extracts of the brine shrimp Artemia. When incubated with tubulin under assembly conditions, the purified 49-kDa protein cross-linked the resulting microtubules. Preformed microtubules were also cross-linked when incubated with the 49-kDa protein. Upon centrifugation through sucrose cushions the 49-kDa protein cosedimented with microtubules, suggesting a stable association between the cross-linking protein and tubulin. Such microtubules were interconnected by particles which were circular, bilobed, or elongated in shape. Disruption of microtubule cross-linking and dissociation of the 49-kDa protein from microtubules occurred in the presence of ATP and 5′-adenylylimidodiphosphate (AMP–PNP), a nonhydrolyzable analogue of ATP. The 49-kDa protein was moderately resistant to heat, it did not stimulate tubulin assembly, and it did not react with antibodies to neural microtubule-associated proteins (MAPs) and kinesin. These observations indicate that the 49-kDa protein is different from many known MAPs, a conclusion strengthened by the inability of antibodies raised to the 49-kDa protein to recognize these proteins. The amino terminal 15 amino acid residues of the 49-kDa protein were determined by Edman digestion and an antibody raised to this peptide reacted with the 49-kDa protein on Western blots. Microtubule cross-linking was unaffected by the synthetic amino-terminal peptide, even when it was present at a fivefold molar excess over the 49-kDa protein. A search of three protein databanks revealed that the amino terminus of the 49-kDa protein is unique among published sequences. The findings verify our earlier proposal that Artemia contains a 49-kDa microtubule cross-linking protein and demonstrate that it has a novel set of characteristics. The 49-kDa protein has the potential to play an important role in microtubule organization and function.Key words: microtubule cross-linking, microtubule-associated proteins, Artemia.


1977 ◽  
Vol 72 (2) ◽  
pp. 380-389 ◽  
Author(s):  
P Sherline ◽  
Y C Lee ◽  
L S Jacobs

Microtubules assembled in vitro were bound to purified porcine pituitary secretory granules and to isolated granule membranes. The interaction between microtubules and whole secretory granules was demonstrated by alteration in the sedimentation properties of the microtubules. Incubation of secretory granules with microtubules resulted in pelleting of microtubules which increased as a function of the number of granules added. Binding was quantitated by measurement of the tubulin remaining in the supernate after centrifugation. The interaction of secretory granules and microtubules was inhibited by nucleoside triphosphates and augmented by adenosine 5'-monophosphate and adenosine. When depolymerized protein from microtubules was incubated with secretory granules, the granules did not appear to bind the soluble tubulin dimer present in these preparations. However, the high molecular weight protein associated with microtubules was adsorbed by secretory granules during the binding process. Incubation of isolated secretory granule membranes with microtubules followed by centrifugation to density equilibrium in a discontinuous sucrose density gradient caused pelleting of the membranes, which otherwise banded higher in the gradient. The visible alteration in membrane sedimentation was confirmed by measurements of the membrane-associated magnesium-ATPase activity and by a shift in radioactivity in iodinated membrane preparations. Our data suggest a role for microtubules in the intracellular movement of secretory granules; this movement is perhaps brought about by dynein-like cross bridges which link the tubulin backbone and granule surface.


1979 ◽  
Vol 80 (2) ◽  
pp. 266-276 ◽  
Author(s):  
H Kim ◽  
L I Binder ◽  
J L Rosenbaum

Several high molecular weight polypeptides have been shown to quantitatively copurify with brain tubulin during cycles of in vitro assembly-disassembly. These microtubule-associated proteins (MAPs) have been shown to influence the rate and extent of microtubule assembly in vitro. We report here that a heat-stable fraction highly enriched for one of the MAPs, MAP2 (mol wt approximately 300,000 daltons), devoid of MAP1 (mol wt approximately 350,000 daltons), has been purified from calf neurotubules. This MAP2 fraction stoichiometrically promotes microtubule assembly, lowering the critical concentration for tubulin assembly to 0.05 mg/ml. Microtubules saturated with MAP2 contain MAP2 and tubulin in a molar ratio of approximately 1 mole of MAP2 to 9 moles of tubulin dimer. Electron microscopy of thin sections of the MAP2-saturated microtubules fixed in the presence of tannic acid demonstrates a striking axial periodicity of 32 +/- 8 nm.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


Author(s):  
Nobutaka Hirokawa

In this symposium I will present our studies about the molecular architecture and function of the cytomatrix of the nerve cells. The nerve cell is a highly polarized cell composed of highly branched dendrites, cell body, and a single long axon along the direction of the impulse propagation. Each part of the neuron takes characteristic shapes for which the cytoskeleton provides the framework. The neuronal cytoskeletons play important roles on neuronal morphogenesis, organelle transport and the synaptic transmission. In the axon neurofilaments (NF) form dense arrays, while microtubules (MT) are arranged as small clusters among the NFs. On the other hand, MTs are distributed uniformly, whereas NFs tend to run solitarily or form small fascicles in the dendrites Quick freeze deep etch electron microscopy revealed various kinds of strands among MTs, NFs and membranous organelles (MO). These structures form major elements of the cytomatrix in the neuron. To investigate molecular nature and function of these filaments first we studied molecular structures of microtubule associated proteins (MAP1A, MAP1B, MAP2, MAP2C and tau), and microtubules reconstituted from MAPs and tubulin in vitro. These MAPs were all fibrous molecules with different length and formed arm like projections from the microtubule surface.


2006 ◽  
Vol 172 (7) ◽  
pp. 1009-1022 ◽  
Author(s):  
Jawdat Al-Bassam ◽  
Mark van Breugel ◽  
Stephen C. Harrison ◽  
Anthony Hyman

Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat–containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.


2021 ◽  
Vol 22 (8) ◽  
pp. 3995
Author(s):  
Cheong-Yong Yun ◽  
Nahyun Choi ◽  
Jae Un Lee ◽  
Eun Jung Lee ◽  
Ji Young Kim ◽  
...  

Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.


1983 ◽  
Vol 96 (5) ◽  
pp. 1298-1305 ◽  
Author(s):  
D B Murphy ◽  
R R Hiebsch ◽  
K T Wallis

Microtubule protein purified from brain tissue by cycles of in vitro assembly-disassembly contains ATPase activity that has been postulated to be associated with microtubule-associated proteins (MAPs) and therefore significant for studies of microtubule-dependent motility. In this paper we demonstrate that greater than 90% of the ATPase activity is particulate in nature and may be derived from contaminating membrane vesicles. We also show that the MAPs (MAP-1, MAP-2, and tau factors) and other high molecular weight polypeptides do not contain significant amounts of ATPase activity. These findings do not support the concept of "brain dynein" or of MAPs with ATPase activity.


2021 ◽  
Vol 22 (7) ◽  
pp. 3700
Author(s):  
Junna Hayashi ◽  
Jennifer Ton ◽  
Sparsh Negi ◽  
Daniel E. K. M. Stephens ◽  
Dean L. Pountney ◽  
...  

Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.


Sign in / Sign up

Export Citation Format

Share Document