scholarly journals Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures.

1988 ◽  
Vol 107 (4) ◽  
pp. 1589-1598 ◽  
Author(s):  
Y Kubota ◽  
H K Kleinman ◽  
G R Martin ◽  
T J Lawley

We have defined a signal responsible for the morphological differentiation of human umbilical vein and human dermal microvascular endothelial cells in vitro. We find that human umbilical vein endothelial cells deprived of growth factors undergo morphological differentiation with tube formation after 6-12 wk, and that human dermal microvascular endothelial cells differentiate after 1 wk of growth factor deprivation. Here, we report that morphological differentiation of both types of endothelial cells is markedly accelerated by culture on a reconstituted gel composed of basement membrane proteins. Under these conditions, tube formation begins in 1-2 h and is complete by 24 h. The tubes are maintained for greater than 2 wk. Little or no proliferation occurs under these conditions, although the cells, when trypsinized and replated on fibronectin-coated tissue culture dishes, resume division. Ultrastructurally, the tubes possess a lumen surrounded by endothelial cells attached to one another by junctional complexes. The cells possess Weibel-Palade bodies and factor VIII-related antigens, and take up acetylated low density lipoproteins. Tubule formation does not occur on tissue culture plastic coated with laminin or collagen IV, either alone or in combination, or on an agarose or a collagen I gel. However, endothelial cells cultured on a collagen I gel supplemented with laminin form tubules, while supplementation with collagen IV induces a lesser degree of tubule formation. Preincubation of endothelial cells with antibodies to laminin prevented tubule formation while antibodies to collagen IV were less inhibitory. Preincubation of endothelial cells with synthetic peptides derived from the laminin B1 chain that bind to the laminin cell surface receptor or incorporation of these peptides into the gel matrix blocked tubule formation, whereas control peptides did not. These observations indicate that endothelial cells can rapidly differentiate on a basement membrane-like matrix and that laminin is the principal factor in inducing this change.

Vascular ◽  
2020 ◽  
pp. 170853812095997
Author(s):  
Song Xue ◽  
Hanfei Tang ◽  
Gefei Zhao ◽  
Yang Shen ◽  
Ethan Yibo Yang ◽  
...  

Objectives Angiogenesis is an important progress associated with several pathological situations. Several chemokines have been reported to act as regulators of angiogenesis. The current study aimed to find whether C-C Motif Chemokine 8 is involved in angiogenesis regulation. Methods To verify whether C-C Motif Chemokine 8 is related to angiogenesis in plaques, carotid plaques were collected from patients with severe carotid stenosis and analysed using CD31 immunohistochemistry and real-time PCR. To further clarify the relation between C-C Motif Chemokine 8 and angiogenesis, human umbilical vein endothelium cells and human dermal microvascular endothelial cells were treated with C-C Motif Chemokine 8 in the presence or absence of C-C motif chemokine receptor 2-Ab and extracellular regulated MAP kinase 1/2 inhibition (FR180204). Proliferation and migration of human umbilical vein endothelium cells and human dermal microvascular endothelial cells were examined with Cell Counting Kit-8 and Transwell chamber assay, respectively. In vitro angiogenesis stimulated by C-C Motif Chemokine 8 was examined using tube formation assay. Ex vivo and in vivo angiogenesis were assessed by mice aortic ring assay and Matrigel plug assay, respectively. C-C motif chemokine receptors of human umbilical vein endothelium cells were examined with real-time PCR, and C-C motif chemokine receptor 1, C-C motif chemokine receptor 2, extracellular regulated MAP kinase 1/2 and phosphorylation-extracellular regulated MAP kinase 1/2 were examined with western blotting assay. Results C-C Motif Chemokine 8 was increased in carotid plaques with severe angiogenesis in both RNA and protein level. C-C Motif Chemokine 8 (5 ng/ml) weakly increased human umbilical vein endothelium cell proliferation, but not on human dermal microvascular endothelial cells. Migration and tube formation could be induced by C-C Motif Chemokine 8 in both human umbilical vein endothelium cells and human dermal microvascular endothelial cells. In mice aortic ring assay and Matrigel plug assay, C-C Motif Chemokine 8 could promote angiogenesis compared to vehicle groups. Phosphorylation of extracellular regulated MAP kinase 1/2 was increased with C-C Motif Chemokine 8 stimulation. The migration and tube formation promoted by C-C Motif Chemokine 8 could be largely blocked by C-C motif chemokine receptor 2-Ab or extracellular regulated MAP kinase 1/2 inhibition (FR180204). Conclusions C-C Motif Chemokine 8 could promote both in vitro and in vivo angiogenesis. C-C motif chemokine receptor 2 played an important role in the activation of C-C Motif Chemokine 8 and extracellular regulated MAP kinase 1/2 signalling pathway was involved in this mechanism.


1995 ◽  
Vol 108 (12) ◽  
pp. 3685-3694 ◽  
Author(s):  
D.S. Grant ◽  
J.L. Kinsella ◽  
M.C. Kibbey ◽  
S. LaFlamme ◽  
P.D. Burbelo ◽  
...  

We performed differential cDNA hybridization using RNA from endothelial cells cultured for 4 hours on either plastic or basement membrane matrix (Matrigel), and identified early genes induced during the morphological differentiation into capillary-like tubes. The mRNA for one clone, thymosin beta 4, was increased 5-fold. Immunostaining localized thymosin beta 4 in vivo in both growing and mature vessels as well as in other tissues. Endothelial cells transfected with thymosin beta 4 showed an increased rate of attachment and spreading on matrix components, and an accelerated rate of tube formation on Matrigel. An antisense oligo to thymosin beta 4 inhibited tube formation on Matrigel. The results suggest that thymosin beta 4 is induced and likely involved in differentiating endothelial cells. Thymosin beta 4 may play a role in vessel formation in vivo.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1469 ◽  
Author(s):  
Chung-Sheng Shi ◽  
Kuan-Lin Kuo ◽  
Mei-Sin Chen ◽  
Po-Ming Chow ◽  
Shing-Hwa Liu ◽  
...  

Cancer cells rely on aberrant transcription for growth and survival. Cyclin-dependent kinases (CDKs) play critical roles in regulating gene transcription by modulating the activity of RNA polymerase II (RNAPII). THZ1, a selective covalent inhibitor of CDK7, has antitumor effects in several human cancers. In this study, we investigated the role and therapeutic potential of CDK7 in regulating the angiogenic activity of endothelial cells and human renal cell carcinoma (RCC). Our results revealed that vascular endothelial growth factor (VEGF), a critical activator of angiogenesis, upregulated the expression of CDK7 and RNAPII, and the phosphorylation of RNAPII at serine 5 and 7 in human umbilical vein endothelial cells (HUVECs), indicating the transcriptional activity of CDK7 may be involved in VEGF-activated angiogenic activity of endothelium. Furthermore, through suppressing CDK7 activity, THZ1 suppressed VEGF-activated proliferation and migration, as well as enhanced apoptosis of HUVECs. Moreover, THZ1 inhibited VEGF-activated capillary tube formation and CDK7 knockdown consistently diminished tube formation in HUVECs. Additionally, THZ1 reduced VEGF expression in human RCC cells (786-O and Caki-2), and THZ1 treatment inhibited tumor growth, vascularity, and angiogenic marker (CD31) expression in RCC xenografts. Our results demonstrated that CDK7-mediated transcription was involved in the angiogenic activity of endothelium and human RCC. THZ1 suppressed VEGF-mediated VEGFR2 downstream activation of angiogenesis, providing a new perspective for antitumor therapy in RCC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Shaoyang Zhang ◽  
Meili Cheng ◽  
Zhen Wang ◽  
Yuzhi Liu ◽  
Yuhua Ren ◽  
...  

Inflammation is a key regulator in the progression of atherosclerosis (AS) which extremely affects people’s health. Secoisolariciresinol diglucoside (SDG), a plant lignan, is relevant to angiogenesis and cardioprotection against ischemia-reperfusion injury and improves vascular disorders. However, the effect of SDG on cardiovascular disorder is not clear. In the present study, we aimed to investigate the effects of SDG on lipopolysaccharide- (LPS-) stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and elucidate the underlying mechanism. The LPS-stimulated HUVEC cellular model was established. The cell viability, the cell tube formation activity, the nitric oxide (NO) release, the levels of inflammatory cytokine interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), the activation of nuclear factor kappa-B (NF-κB) pathway, and the expression of protein kinase B (Akt) were determined using Cell Counting Kit-8, cell tube-formation assay, western blotting, and enzyme-linked immunosorbent assay. Our results revealed that SDG reduces the angiogenic capacity of HUVECs and inhibited LPS-mediated HUVEC injury and apoptosis. In addition, SDG increased NO release and decreased the levels of IL-1β, IL-6, and TNF-α in LPS-treated HUVECs. Meanwhile, SDG inhibited the NF-κB pathway and downregulated Akt expression in LPS-induced HUVECs. Our results indicated that SDG relieves LPS-mediated HUVEC injury by inhibiting the NF-κB pathway which is partly dependent on the disruption of Akt activation. Therefore, SDG exerts its cytoprotective effects in the context of LPS-treated HUVECs via regulation of the Akt/IκB/NF-κB pathway and may be a potential treatment drug for cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document