scholarly journals THE USE OF SPECIFIC ANTIBODY IN ELECTRON MICROSCOPY

1961 ◽  
Vol 11 (3) ◽  
pp. 533-547 ◽  
Author(s):  
Frank A. Pepe ◽  
H. Finck ◽  
H. Holtzer

Antibody staining was observed in the electron microscope by means of untagged antibody and osmium fixation. The antibody was visualized as a change in morphology due to its deposition on the antigenic structures. Glycerinated chicken breast muscle was stained with antimyosin, anti-H-meromyosin, and antiactin. The staining patterns obtained by electron microscopy were consistent with those previously demonstrated by fluorescence microscopy. A second method was used for confirmation of antibody staining. This consisted of extraction of unstained portions of the sarcomere with 0.6 M potassium iodide, 10-4 M adenosine triphosphate solution. Stained regions of the sarcomere remained intact because of insolubility of the combined antigen and antibody.

1961 ◽  
Vol 11 (3) ◽  
pp. 515-520 ◽  
Author(s):  
Frank A. Pepe

The preparation of antimyosin conjugated with mercury and fluorescein is described. The mercury was introduced to permit visualization of the antibody in the electron microscope. An organic mercurial, tetraacetoxymercuriarsanilic acid, was prepared and coupled to the antibody through the diazonium salt. The fluorescein was coupled through the isocyanate by a modification of the procedure described by Coons and Kaplan. The antibody conjugate retained its specificity of reaction with the tissue antigen. This was demonstrated by the staining pattern obtained in fluorescence microscopy.


Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


1975 ◽  
Vol 23 (3) ◽  
pp. 169-173 ◽  
Author(s):  
S P Kent ◽  
D V Wilson

Two polysaccharides, dextran 250 and dextran 70, were covalently linked to antibody molecules, antihuman immunoglobulin G and antihuman type O red blood cells. In electron microscope preparations exposed to lead citrate, polysaccharides, because they chelate lead, were quite dense. Polysaccharides served as a tag for the antibody molecules. Also, bacterial dextran 1355 was used to demonstrate antibody molecules on the surface of ascites tumor cells which are known to be producing a specific antibody to bacterial dextran 1355. The varying sized polysaccharide molecules that are readily available commercially, the high electron density of the polysaccharides after lead staining and a mild procedure for covalently linking polysaccharide to antibody make polysaccharides attractive as particulate labels for antibody in electronmicroscopy.


1988 ◽  
Vol 106 (5) ◽  
pp. 1563-1572 ◽  
Author(s):  
D O Fürst ◽  
M Osborn ◽  
R Nave ◽  
K Weber

mAbs specific for titin or nebulin were characterized by immunoblotting and fluorescence microscopy. Immunoelectron microscopy on relaxed chicken breast muscle revealed unique transverse striping patterns. Each of the 10 distinct titin antibodies provided a pair of delicate decoration lines per sarcomere. The position of these pairs was centrally symmetric to the M line and was antibody dependent. The results provided a linear epitope map, which starts at the Z line (antibody T20), covers five distinct positions along the I band (T21, T12, T4, T1, T11), the A-I junction (T3), and three distinct positions within the A band (T10, T22, T23). The epitope of T23 locates 0.2 micron before the M line. In immunoblots, the two antibodies decorating at or just before the Z line (T20, T21) specifically recognized the insoluble titin TI component but did not recognize TII, a proteolytic derivative. All other titin antibodies recognized TI and TII. Thus titin molecules appear as polar structures lacking over large regions repetitive epitopes. One physical end seems related to Z line anchorage, while the other may bind close to the M line. Titin epitopes influenced by the contractional state of the sarcomere locate between the N1 line and the A-I junction (T4, T1, T11). We discuss the results in relation to titin molecules having half-sarcomere lengths. The three nebulin antibodies so far characterized again give rise to distinct pairs of stripes. These locate close to the N2 line.


Author(s):  
Linda M. Stannard ◽  
Margaret Lennon

Burnupena cincta and Fusus verruculatus are two whelks which inhabit the intertidal zones of the Cape Peninsula shore. Their respiratory pigments, or haemocyanins, are morphologically similar in structure (Figs. 1 and 2) and appear in the electron microscope as short cylindrical rods about 34 nm in diameter and 36 nm high. Viewed side-on the molecules show regular banding suggesting a structure composed of six equidistant rings of sub-units. Occasionally the particles have the appearance of possessing a central “belt” in the position of the 3rd and 4th rows of sub-units. End-on views of the haemocyanin molecules show a circular contour with a dense outer ring and a less dense inner ring in which 10 definite sub-units may frequently be distinguished. A number of molecules display an extra central inner component which appears either as a diffuse plug or as a discrete ring-shaped core ± 8 nm in diameter.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


Author(s):  
E. U. Lee ◽  
P. A. Garner ◽  
J. S. Owens

Evidence for ordering (1-6) of interstitial impurities (O and C) has been obtained in b.c.c. metals, such as niobium and tantalum. In this paper we report the atomic and microstructural changes in an oxygenated c.p.h. metal (alpha titanium) as observed by transmission electron microscopy and diffraction.Oxygen was introduced into zone-refined iodide titanium sheets of 0.005 in. thickness in an atmosphere of oxygen and argon at 650°C, homogenized at 800°C and furnace-cooled in argon. Subsequently, thin foils were prepared by electrolytic polishing and examined in a JEM-7 electron microscope, operated at 100 KV.


Sign in / Sign up

Export Citation Format

Share Document