scholarly journals Identification of a Ca2(+)-dependent cell-cell adhesion molecule in endothelial cells.

1990 ◽  
Vol 110 (5) ◽  
pp. 1745-1756 ◽  
Author(s):  
R L Heimark ◽  
M Degner ◽  
S M Schwartz

Confluent cultures of aortic endothelial cells contain two different cell-cell adhesion mechanisms distinguished by their requirement for calcium during trypsinization and adhesion. A hybridoma clone was isolated producing a monoclonal antibody Ec6C10, which inhibits Ca2(+)-dependent adhesion of endothelial cells. There was no inhibition of Ca2(+)-independent adhesion of endothelial cells and only a minor effect on Ca2(+)-dependent adhesion of smooth muscle cells. Immunoblotting analysis shows that the antibody Ec6C10 recognizes a protein in endothelial but not epithelial cells with an apparent molecular weight of 135,000 in reducing conditions and 130,000 in non-reducing conditions. Monoclonal antibody Ec6C10 reacts with an antigen at the cell surface as shown by indirect immunofluorescence of confluent endothelial cells in a junctional pattern outlining the cobblestone morphology of the monolayer. Removal of extracellular calcium increased the susceptibility of the antigen recognized by antibody Ec6C10 to proteolysis by trypsin. The role of the Ca2(+)-dependent cell adhesion molecule in organization of the dense peripheral microfilament band in confluent endothelial cells was examined by adjusting the level of extracellular calcium to modulate cell-cell contact. Addition of the monoclonal antibody Ec6C10 at the time of the calcium switch inhibited the extent of formation of the peripheral F-actin band. These results suggest an association between cell-cell contact and the peripheral F-actin band potentially through the Ca2(+)-dependent CAM.

1997 ◽  
Vol 8 (7) ◽  
pp. 1329-1341 ◽  
Author(s):  
N Sheibani ◽  
P J Newman ◽  
W A Frazier

Expression of thrombospondin-1 (TS1) in polyoma middle-sized T (tumor)-transformed mouse brain endothelial cells (bEND.3) restores a normal phenotype and suppresses their ability to form hemangiomas in mice. We show that TS1 expression results in complete suppression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) expression and altered cell-cell interactions in bEND.3 cells. To further investigate the role of PECAM-1 in regulation of endothelial cell-cell interactions and morphogenesis, we expressed human (full length) or murine (delta 15) PECAM-1 isoforms in TS1-transfected bEND.3 (bEND/TS) cells. Expression of either human or murine PECAM-1 resulted in an enhanced ability to organize and form networks of cords on Matrigel, an effect that was specifically blocked by antibodies to PECAM-1. Anti-PECAM-1 antibodies also inhibited tube formation in Matrigel by normal human umbilical vein endothelial cells. However, PECAM-1-transfected bEND/TS cells did not regain the ability to form hemangiomas in mice and the expressed PECAM-1, unlike the endogenous PECAM-1 expressed in bEND.3 cells, failed to localize to sites of cell-cell contact. This may be, in part, attributed to the different isoforms of PECAM-1 expressed in bEND.3 cells. Using reverse transcription-polymerase chain reaction, we determined that bEND.3 cells express mRNA encoding six different PECAM-1 isoforms, the isoform lacking both exons 14 and 15 (delta 14&15) being most abundant. Expression of the murine delta 14&15 PECAM-1 isoform in bEND/TS cells resulted in a similar phenotype to that described for the full-length human or murine delta 15 PECAM-1 isoform. The delta 14&15 isoform, despite the lack of exon 14, failed to localize to sites of cell-cell contact even in clones that expressed it at very high levels. Thus, contrary to recent reports, lack of exon 14 is not sufficient to result in junctional localization of PECAM-1 isoforms in bEND/TS cells.


1990 ◽  
Vol 110 (2) ◽  
pp. 349-357 ◽  
Author(s):  
W J Nelson ◽  
E M Shore ◽  
A Z Wang ◽  
R W Hammerton

Cell-cell contact is an important determinant in the formation of functionally distinct plasma membrane domains during the development of epithelial cell polarity. In cultures of Madin-Darby canine kidney (MDCK) epithelial cells, cell-cell contact induces the assembly and accumulation of the Na+,K+-ATPase and elements of the membrane-cytoskeleton (ankyrin and fodrin) at the regions of cell-cell contact. Epithelial cell-cell contact appears to be regulated by the cell adhesion molecule uvomorulin (E-cadherin) which also becomes localized at the lateral plasma membrane of polarized cells. We have sought to determine whether the colocalization of these proteins reflects direct molecular interactions which may play roles in coordinating cell-cell contact and the assembly of the basal-lateral domain of the plasma membrane. Recently, we identified a complex of proteins containing the Na+,K+-ATPase, ankyrin, and fodrin in extracts of whole MDCK cells (Nelson, W.J., and R. W. Hammerton. 1989. J. Cell Biol. 108:893-902). We have now examined cell extracts for protein complexes containing the cell adhesion molecule uvomorulin. Proteins were solubilized from whole MDCK cells and fractionated in sucrose gradients. The sedimentation profile of solubilized uvomorulin is well separated from the majority of cell surface proteins, suggesting that uvomorulin occurs in a protein complex. A distinct portion of uvomorulin (30%) cosediments with ankyrin and fodrin (approximately 10.5S). Further fractionation of cosedimenting proteins in nondenaturing polyacrylamide gels reveals a discrete band of proteins that binds antibodies specific for uvomorulin, Na+,K+-ATPase, ankyrin, and fodrin. Significantly, ankyrin and fodrin, but not Na+K+-ATPase, coimmunoprecipitate in a complex with uvomorulin using uvomorulin antibodies. This result indicates that separate complexes exist containing ankyrin and fodrin with either uvomorulin or Na+,K+-ATPase. These results are discussed in the context of the possible roles of uvomorulin-induced cell-cell contact in the assembly of the membrane-cytoskeleton and associated membrane proteins (e.g., Na+,K+-ATPase) at the contact zone and in the development of cell polarity.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 729-740
Author(s):  
S.L. Crittenden ◽  
R.S. Pratt ◽  
J.H. Cook ◽  
J. Balsamo ◽  
J. Lilien

Rabbit polyclonal antibodies raised to gp90, a fragment of the embryonic chick neural retina Ca2+-dependent adhesive molecule, gp130, recognize gp130 and inhibit Ca2+-dependent cell-cell adhesion. When tested against a panel of 10-day embryonic tissues, one of these antisera recognizes a component with a molecular weight identical to that of gp130 in embryonic chick cerebrum, optic lobe, hind brain, spinal cord and neural retina only; the second antiserum recognizes a similar component in all of the embryonic chick tissues tested. These data imply the existence of an extended family of closely related cell surface components with immunologically distinct subgroups each of which may mediate Ca2+-dependent cell-cell adhesion. As the term CAM, or cell adhesion molecule, has become common usage we propose to refer to these molecules as calCAMs, reflecting their calcium dependence. Analysis of fragments and endoglycosidase digests of NcalCAM have allowed a comparison of its structure with similar molecules from different tissues and species that have been implicated in Ca2+-dependent cell-cell adhesion.


1996 ◽  
Vol 271 (27) ◽  
pp. 16399-16408 ◽  
Author(s):  
Estella F. S. Wong ◽  
Simuran K. Brar ◽  
Hiromi Sesaki ◽  
Chunzhong Yang ◽  
Chi-Hung Siu

1991 ◽  
Vol 55 ◽  
pp. 292
Author(s):  
Hideyuki Kobayashi ◽  
Tsunetaka Mizuki ◽  
Yoshiro Koda ◽  
Akihiko Wada ◽  
Futoshi Izumi

1992 ◽  
Vol 116 (2) ◽  
pp. 449-463 ◽  
Author(s):  
R J Bloch

I have examined the distribution of neural cell adhesion molecule (N-CAM) in cultured C2 myogenic cells and other cell lines to determine if N-CAM accumulates at sites of cell-cell contact. C2 cells growing in log phase display large clusters of neural cell adhesion molecule where they contact each other. These clusters are remarkably stable, do not form at cell-substrate contacts, and appear not to be enriched in a number of other cytoskeletal, membrane, or extracellular proteins. Thus, N-CAM clusters form preferentially in response to cell-cell contact and are specifically enriched in N-CAM. As C2 cultures mature and differentiate, clusters persist at contacts between aligning myoblasts and between myotubes, consistent with a role in myogenesis. N-CAM is also enriched at cell-cell contacts in cultures of PC12, NRK, and CHO cells. These cells have significant amounts of N-CAM as detected on immunoblots. Clusters are not seen in L929 cells, which do not have detectable amounts of N-CAM. Coculture of these cells with C2 cells results in the clustering of N-CAM at heterologous contacts between C2 cells and NRK, CHO, or PC12 cells, but not between C2 cells and L929 cells. These results suggest that N-CAM specifically accumulates where N-CAM-bearing cells contact one another. Clustering of N-CAM may be an important step in strengthening intercellular adhesion.


1990 ◽  
Vol 110 (4) ◽  
pp. 1227-1237 ◽  
Author(s):  
S M Albelda ◽  
P D Oliver ◽  
L H Romer ◽  
C A Buck

Cell-cell adhesion is controlled by many molecules found on the cell surface. In addition to the constituents of well-defined junctional structures, there are the molecules that are thought to play a role in the initial interactions of cells and that appear at precise times during development. These include the cadherins and cell adhesion molecules (CAMs). Representatives of these families of adhesion molecules have been isolated from most of the major tissues. The notable exception is the vascular endothelium. Here we report the identification of a cell surface molecule designated "endoCAM" (endothelial Cell Adhesion Molecule), which may function as an endothelial cell-cell adhesion molecule. EndoCAM is a 130-kD glycoprotein expressed on the surface of endothelial cells both in culture and in situ. It is localized to the borders of contiguous endothelial cells. It is also present on platelets and white blood cells. Antibodies against endoCAM prevent the initial formation of endothelial cell-cell contacts. Despite similarities in size and intercellular location, endoCAM does not appear to be a member of the cadherin family of adhesion receptors. The serologic and protease susceptibility characteristics of endoCAM are different from those of the known cadherins, including an endogenous endothelial cadherin. Although the precise biologic function of endoCAM has not been determined, it appears to be one of the molecules responsible for regulating endothelial cell-cell adhesion processes and may be involved in platelet and white blood cell interactions with the endothelium.


Neuroscience ◽  
1992 ◽  
Vol 49 (2) ◽  
pp. 437-441 ◽  
Author(s):  
H. Kobayashi ◽  
T. Mizuki ◽  
A. Wada ◽  
F. Izumi

1988 ◽  
Vol 106 (3) ◽  
pp. 873-881 ◽  
Author(s):  
K Hatta ◽  
A Nose ◽  
A Nagafuchi ◽  
M Takeichi

The neural cadherin (N-cadherin) is a Ca2+-dependent cell-cell adhesion molecule detected in neural tissues as well as in non-neural tissues. We report here the nucleotide sequence of the chicken N-cadherin cDNA and the deduced amino acid sequence. The sequence data suggest that N-cadherin has one transmembrane domain which divides the molecule into an extracellular and a cytoplasmic domain; the extracellular domain contains internal repeats of characteristic sequences. When the N-cadherin cDNA connected with virus promoters was transfected into L cells which have no endogenous N-cadherin, the transformants acquired the N-cadherin-mediated aggregating property, indicating that the cloned cDNA contained all information necessary for the cell-cell binding action of this molecule. We then compared the primary structure of N-cadherin with that of other molecules defined as cadherin subclasses. The results showed that these molecules contain common amino acid sequences throughout their entire length, which confirms our hypothesis that cadherins make a gene family.


Sign in / Sign up

Export Citation Format

Share Document