scholarly journals A monoclonal antibody to a mitotic microtubule-associated protein blocks mitotic progression.

1990 ◽  
Vol 111 (2) ◽  
pp. 511-522 ◽  
Author(s):  
C Nislow ◽  
C Sellitto ◽  
R Kuriyama ◽  
J R McIntosh

A monoclonal antibody raised against mitotic spindles isolated from CHO cells ([CHO1], Sellitto, C., and R. Kuriyama. 1988. J. Cell Biol. 106:431-439) identifies an epitope that resides on polypeptides of 95 and 105 kD and is localized in the spindles of diverse organisms. The antigen is distributed throughout the spindle at metaphase but becomes concentrated in a progressively narrower zone on either side of the spindle midplane as anaphase progresses. Microinjection of CHO1, either as an ascites fluid or as purified IgM, results in mitotic inhibition in a stage-specific and dose-dependent manner. Parallel control injections with nonimmune IgMs do not yield significant mitotic inhibition. Immunofluorescence analysis of injected cells reveals that those which complete mitosis display normal localization of CHO1, whereas arrested cells show no specific localization of the CHO1 antigen within the spindle. Immunoelectron microscopic images of such arrested cells indicate aberrant microtubule organization. The CHO1 antigen in HeLa cell extracts copurifies with taxol-stabilized microtubules. Neither of the polypeptides bearing the antigen is extracted from microtubules by ATP or GTP, but both are approximately 60% extracted with 0.5 M NaCl. Sucrose gradient analysis reveals that the antigens sediment at approximately 11S. The CHO 1 antigen appears to be a novel mitotic MAP whose proper distribution within the spindle is required for mitosis. The properties of the antigen(s) suggest that the corresponding protein(s) are part of the mechanism that holds the antiparallel microtubules of the two interdigitating half spindles together during anaphase.

Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2470-2476 ◽  
Author(s):  
Rong Deng ◽  
Joseph P. Balthasar

Abstract The present work evaluated antibody-coated liposomes as a new treatment strategy for immune thrombocytopenic purpura (ITP) through the use of a mouse model of the disease. Effects of antimethotrexate antibody (AMI)–coated liposomes and intravenous immunoglobulin (IVIG)–coated liposomes (15, 30, 60 μmol lipid/kg) were compared with the effects of IVIG (0.4, 1, 2 g/kg) and anti–red blood cell (anti-RBC) monoclonal antibody immunotherapy (TER119, 5, 15, 25, and 50 μg/mouse) on MWReg30-induced thrombocytopenia. Each treatment was found to attenuate thrombocytopenia in a dose-dependent manner and, consistent with previous work, IVIG was found to increase antiplatelet antibody clearance in a dose-dependent manner. TER119 demonstrated greater effects on thrombocytopenia relative to other therapies (peak platelet counts: 224% ± 34% of initial platelet counts for 50 μg TER119/mouse versus 160% ± 34% for 2 g/kg IVIG, 88% ± 36% for 60 μmol lipid/kg AMI-coated liposomes, and 80% ± 25% for 60 μmol lipid/kg IVIG-coated liposomes). However, the effects of TER119 were associated with severe hemolysis, as TER119 decreased RBC counts by approximately 50%. The present work demonstrated that antibody-coated liposomes attenuated thrombocytopenia in this model at a much lower immunoglobulin dose than that required for IVIG effects and, in contrast with TER119, antibody-coated liposomes increased platelet counts without altering RBC counts.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3105-3105 ◽  
Author(s):  
Liang Lin ◽  
Shih-Feng Cho ◽  
Kenneth Wen ◽  
Tengteng Yu ◽  
Phillip A Hsieh ◽  
...  

A proliferation inducing ligand (APRIL) is a natural ligand for B cell maturation antigen (BCMA) and transmembrane activator and CAML interactor (TACI), two receptors overexpressed in human multiple myeloma (MM) patient cells. Specifically, BCMA is highly expressed in plasma cells of all MM patients and BCMA-based immunotherapies has recently shown impressive response rates in patients with relapsed and refractory diseases. APRIL, mainly secreted by myeloma-supporting bone marrow (BM) accessory cells, i.e., macrophages, osteoclasts (OC), promotes MM cell progression in vitro and in vivo. It further induces survival and function of regulatory T cells (Treg) via TACI, but not BCMA, to support an immunosuppressive MM BM microenvironment (Leukemia. 2019;33:426). Here, we study effects of APRIL in current immunotherapies in MM and determine whether APRIL influences antibody-dependent cellular cytotoxicity (ADCC) induced by therapeutic anti-BCMA (J6M0) or anti-CD38 (daratumumab) mAbs via FcR-expressing immune effector cell-dependent mechanisms. Using anti-human IgG1 to detect J6M0 binding to the cell membrane BCMA, we first showed that APRIL, in a dose-dependent manner (31-500 ng/ml), competed with J6M0 for binding to BCMA. Such effects were inhibited by the blocking anti-APRIL monoclonal antibody (mAb) (Apry-1-1), as confirmed by flow cytometry and confocal microscopy. APRIL still inhibited J6M0 binding to BCMA at 4°C, arguing against that APRIL induces shedding of BCMA receptor. Using PE labeled anti-FLAG to detect APRIL-FLAG bindings to MM cell surface BCMA, J6M0 (0.25-4 µg/ml) did not alter APRIL binding to BCMA following 2h or 1d incubation. High concentrations of J6M0 (>10 µg/ml) only blocked ~50% of APRIL (0.2 µg/ml)-induced NFκB activity as determined by specific DNA binding assays, indicating that APRIL-induced signaling cascade via BCMA or TACI in MM cells is not completely blocked by J6M0. In parallel, data analysis using mRNA-seq identified 594 or 355 differentially expressed genes (Log2-Fold-change > 1.5 and adjusted p < 0.05) in APRIL- and BCMA-overexpressed RPMI8226 MM cell transfectants, respectively, when compared with control parental cells. KEGG and Reactome pathway enrichment analysis further defined that these differentially expressed genes are enriched in cell adhesion, migration, chemokine signaling pathways, and JAK/STAT signaling pathways, in addition to proliferation and survival in MM cells. We next asked whether overnight treatment with APRIL in MM cell lines decreased their baseline lysis by FcR-expressing effector cells, i.e., NK, monocytes. In a dose-dependent manner, APRIL (10-200 ng/ml) downregulated baseline MM cell lysis mediated by these effector cells. Importantly, in a similar fashion, ADCC was decreased against all APRIL-treated vs control MM cell lines induced by J6M0 or daratumumab. Conversely, blocking anti-APRIL mAbs reverted APRIL-suppressed cytotoxicity against MM cells induced by J6M0 or daratuzumab. These results were validated by decreased J6M0-induced NK cell degranulation following co-incubation with APRIL-treated vs control MM cells. In contrast, anti-APRIL neutralizing mAbs specifically blocked APRIL-inhibited NK cell membrane CD107a expression. Furthermore, co-cultures with MM-supporting OCs or macrophages decreased ADCC against MM cells by NK cells; conversely the neutralizing anti-APRIL mAb significantly blocked APRIL-reduced MM cell lysis by J6M0- or Daratumumab. Finally, APRIL reduced J6M0-induced patient MM cell lysis when freshly isolated BM mononuclear cells from MM patients (n=10) were incubated with NK cells from the same individual. Anti-APRIL mAbs still blocked APRIL blockade in J6M0-induced autologous patient MM cell lysis. Taken together, our data further indicate that therapies directed at the APRIL/BCMA and APRIL/TACI axes may simultaneously target MM cells and counteract APRIL-reduced MM cell lysis induced by therapeutic mAbs targeting MM cells. These results thus support combination strategies of blocking APRIL mAbs with BCMA- or CD38-directed immunotherapies to further overcome MM cell-induced immunosuppressive BM microenvironment, thereby enhance Disclosures Munshi: Abbvie: Consultancy; Abbvie: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Janssen: Consultancy; Oncopep: Consultancy; Amgen: Consultancy; Amgen: Consultancy; Adaptive: Consultancy; Adaptive: Consultancy; Celgene: Consultancy. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder .


1988 ◽  
Vol 59 (03) ◽  
pp. 426-431 ◽  
Author(s):  
P E Gargan ◽  
V A Ploplis ◽  
J D Scheu

SummaryMonoclonal antibodies to human fibrin have been prepared from stable hybridomas, obtained by fusion of a mouse myeloma cell line (NS-1) and spleen cells of Balb/c mice immunized with a suspension of human fibrin. One cell line, DG1, producing a monoclonal antibody of the IgG1 κ subclass, reacted specifically with human fibrin (KD = 1.2 nM). Western blotting analysis indicates that DG1 crossreacts with the fibrin fragment D-dimer. Using both a chromogenic and an 125I-fibrin release assay it was illustrated that in the presence of the fibrin specific antibody the t-PA mediated generation of plasmin was significantly inhibited.An animal model system, developed to monitor thrombosis and induced reactive fibrinolysis, was used to investigate the interference of plasminogen activation, by the antibody, in vivo.This fibrin specific antibody prolonged the onset of reactive fibrinolysis in a dose dependent manner.


1996 ◽  
Vol 320 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Luisa DIOMEDE ◽  
Silvano SOZZANI ◽  
Walter LUINI ◽  
Marina ALGERI ◽  
Luca DE GIOIA ◽  
...  

Prion-related encephalopathies are characterized by the intracerebral accumulation of an abnormal isoform of the cellular prion protein (PrPC) named scrapie prion protein (PrPSc). The pathological forms of this protein and its cellular precursor are not only expressed in the brain but also, at lower concentrations, in peripheral tissues. We recently showed that a synthetic peptide corresponding to residues 106–126 [PrP-(106–126)] of the human PrP is toxic to neurons and trophic to astrocytes in vitro. Our experiments were aimed at verifying whether PrP-(106–126) and other peptides corresponding to fragments of the amyloid protein purified from brains of patients with Gerstmann–Sträussler–Scheinker disease – namely PrP-(89–106), PrP-(106–114), PrP-(127–147) – were capable of stimulating circulating leucocytes. Native PrP expression in human lymphocytes, monocytes and neutrophils was first confirmed using PCR amplification of total RNA, after reverse transcription, and immunoblot analysis of cell extracts with anti-PrP antibodies. PrP-(106–126), but not the other peptides, increased membrane microviscosity, intracellular Ca2+ concentration and cell migration in circulating leucocytes, and O2-•production in monocytes and neutrophils. Membrane microviscosity was determined by the fluorescence polarization technique, using diphenylhexatriene as a probe, 300 s after the addition of PrP-(106–126) to the cell suspension in the concentration range 5–50 µM. The increase in intracellular Ca2+ elicited by PrP-(106–126) was dose-dependent in the range 5–500 µM. PrP-(106–126) stimulated O2-•production in monocytes and neutrophils in a dose- (10–300 µM) and time-(5–30 min) dependent manner in the presence of 10 µM dihydrocytochalasin B. Both the increase in Ca2+ concentration and the O2-•production were partially sensitive to pertussis toxin. PrP-(106–126) stimulated leucocyte migration in a dose-dependent (30–300 µM) manner and, at the highest concentration used, this migration was comparable with that elicited by 2.5 nM interleukin 8 or 10 nM fMet-Leu-Phe peptide.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e15118-e15118
Author(s):  
S. Lin ◽  
E. Chiang ◽  
Y. Tsai ◽  
S. Lee ◽  
B. Kuo ◽  
...  

e15118 Background: While clinical benefit against colorectal cancer has been observed with therapeutic monoclonal antibodies such as bevacizumab, cetuximab and panituzumab, the death rate of advanced colorectal cancer remains high that warrants further development of more potent therapeutics. Methods: A cell-based immunization approach was used to generate monoclonal antibodies against targets expressed on human colorectal cancer cells. A chimeric monoclonal antibody, AbGn-7, was selected and evaluated for the potential clinical use to treat colorectal cancer. Results: Expression of AbGn-7 antigen: Carbohydrate competition assay demonstrated that AbGn-7 recognizes a Lewis-A-like carbohydrate antigen (AbGn-7 antigen). Immunohistochemical studies showed that AbGn-7 antigen is expressed in colorectal cancer tissue. No significant binding could be detected in non-tumor tissues except in the epithelia of GI track. Effector function of AbGn-7: AbGn-7 triggered dose-dependent apoptosis in COLO 205 colon cancer cell. In addition, AbGn-7 elicited potent complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) in a dose-dependent manner. Molecular mechanism of apoptosis induced by AbGn-7: Tunel assay, PARP cleavage assay as well as caspase inhibitor studies demonstrated that AbGn-7 induced apoptosis in COLO 205 colon cancer cells via a caspase-independent pathway. Xenograft study: AbGn-7 alone, or in combination with 5FU-Leucovorin, effectively inhibited the growth of COLO 205 xenograft in SCID mice and prolonged their survival. Conclusions: The results of the present study suggest that AbGn-7 is a potential candidate for effective treatment of colorectal cancer. [Table: see text]


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2504-2504 ◽  
Author(s):  
Xia Tong ◽  
Georgios V. Georgakis ◽  
Long Li ◽  
O’Brien Susan ◽  
Younes Anas ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (CLL) is characterized by in vivo accumulation of long-lived CD5+ B cells. However when cultured in vitro CLL cells die quickly by apoptosis. Protection from apoptosis in vivo is believed to result from supply of survival signals provided by cells in the microenvironment. We and others have previously reported that CLL cells express CD40 receptor, and that CD40 stimulation of CLL cells may rescue CLL cells from spontaneous and drug-induced apoptosis in vitro. These observations suggested that blocking CD40-CD40L pathway might deprive CLL cells from survival signals and induce apoptosis. To test this hypothesis, we have generated a fully human anti-CD40 blocking monoclonal antibody in XenoMousemice (Abgenix, Inc.). The antibody CHIR-12.12 was first evaluated for its effect on normal human lymphocytes. Lymphocytes from all 10 healthy blood donors did not proliferate in response to CHIR-12.12 at any concentration tested (0.0001 mg/ml to 10 mg/ml range). In contrast, activating CD40 on normal B-lymphocytes by CD40L induced their proliferation in vitro. Importantly, CHIR-12.12 inhibited CD40L- induced proliferation in a dose dependent manner with an average IC50 of 51 ± 26 pM (n=10 blood donors). The antagonistic activity of CHIR-12.12 was then tested in primary CLL samples from 9 patients. CHIR-12.12 alone did not induce CLL cell proliferation. In contrast, primary CLL cells incubated with CD40L, either resisted spontaneous cell death or proliferated. This effect was reversed by co-incubation with CHIR-12.12 antibody, restoring CLL cell death (n=9). CHIR-12.12 was then examined for its ability to lyse CLL cell line EHEB by antibody dependent cell mediated cytotoxicity (ADCC). Freshly isolated human NK cells from normal volunteer blood donors were used as effector cells. CHIR-12.12 showed lysis activity in a dose dependent manner and produced maximum lysis levels at 0.1 mg/ml. When compared with rituximab, CHIR-12.12 mediated greater maximum specific lysis (27.2 % Vs 16.2 %, p= 0.007). The greater ADCC by CHIR-12.12 was not due to higher density of CD40 molecules on CLL cell line compared to CD20 molecules. The CLL target cells expressed 509053 ±13560 CD20 molecules compared to 48416 ± 584 CD40 molecules. Collectively, these preclinical data suggest that CHIR-12.12 monoclonal antibody may have a therapeutic role in patients with CLL.


1988 ◽  
Vol 256 (2) ◽  
pp. 537-541 ◽  
Author(s):  
E R Werner ◽  
G Werner-Felmayer ◽  
D Fuchs ◽  
A Hausen ◽  
G Reibnegger ◽  
...  

The indoleamine 2,3-dioxygenase (EC 1.13.11.17) activity in human T24 cells has been investigated in cell extracts by using a non-radioactive assay. It is enhanced in a dose-dependent manner up to 25-fold by interferon-gamma. The maximum reaction velocity is increased rather than the Km, which remains at 4 mumol/l. Induction of activity starts 3 h after stimulation and reaches a plateau at 21-48 h. Decreased stimulation was observed in the presence of high L-tryptophan concentrations.


Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra Dixit

<p>The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry <i>in vitro</i>. This blockade may be achieved <i>in vivo</i> through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics <i>in vitro</i>. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available <i>in vitro</i> data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways <i>in vivo</i> may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry. <br></p>


2021 ◽  
Vol 22 (17) ◽  
pp. 9515
Author(s):  
Mirna R. Tenan ◽  
Adeline Nicolle ◽  
Daniela Moralli ◽  
Emeline Verbouwe ◽  
Julia D. Jankowska ◽  
...  

Chromosome instability (CIN) consists of high rates of structural and numerical chromosome abnormalities and is a well-known hallmark of cancer. Aluminum is added to many industrial products of frequent use. Yet, it has no known physiological role and is a suspected human carcinogen. Here, we show that V79 cells, a well-established model for the evaluation of candidate chemical carcinogens in regulatory toxicology, when cultured in presence of aluminum—in the form of aluminum chloride (AlCl3) and at concentrations in the range of those measured in human tissues—incorporate the metal in a dose-dependent manner, predominantly accumulating it in the perinuclear region. Intracellular aluminum accumulation rapidly leads to a dose-dependent increase in DNA double strand breaks (DSB), in chromosome numerical abnormalities (aneuploidy) and to proliferation arrest in the G2/M phase of the cell cycle. During mitosis, V79 cells exposed to aluminum assemble abnormal multipolar mitotic spindles and appear to cluster supernumerary centrosomes, possibly explaining why they accumulate chromosome segregation errors and damage. We postulate that chronic aluminum absorption favors CIN in mammalian cells, thus promoting carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document