scholarly journals Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin.

1990 ◽  
Vol 111 (3) ◽  
pp. 1233-1243 ◽  
Author(s):  
R H Kramer ◽  
Y F Cheng ◽  
R Clyman

Microvascular endothelial cells (MEC) use a set of surface receptors to adhere not only to the vascular basement membrane but, during angiogenic stimulation, to the interstitium. We examined how cultured human MEC interact with laminin-rich basement membranes. By using a panel of monoclonal antibodies, we found that MEC cells express a number of integrin-related receptor complexes, including alpha 1 beta 1, alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1, alpha V beta 3. Attachment to laminin, a major adhesive protein in basement membranes, was studied in detail. Blocking monoclonal antibodies specific to different integrin receptor complexes showed that the alpha 6 beta 1 complex was important for MEC adhesion to laminin. In addition, blocking antibody also implicated the vitronectin receptor (alpha V beta 3) in laminin adhesion. We used ligand affinity chromatography of detergent-solubilized receptor complexes to further define receptor specificity. On laminin-Sepharose columns, we identified several integrin receptor complexes whose affinity for the ligand was dependent on the type of divalent cation present. Several beta 1 complexes, including alpha 1 beta 1, alpha 2 beta 1, and alpha 6 beta 1 bound strongly to laminin. In agreement with the antibody blocking experiments, alpha V beta 3 was found to bind well to laminin. However, unlike binding to its other ligands (e.g., vitronectin, fibrinogen, von Willebrand factor), alpha V beta 3 interaction with laminin did not appear to be Arg-Gly-Asp (RGD) sensitive. Finally, immunofluorescent staining demonstrated both beta 1 and beta 3 complexes in vinculin-positive focal adhesion plaques on the basal surface of MEC adhering to laminin-coated substrates. The results indicate that both these subfamilies of integrin heterodimers are involved in promoting MEC adhesion to laminin and the vascular basement membrane.

1987 ◽  
Vol 88 (2) ◽  
pp. 161-175
Author(s):  
M.B. Furie ◽  
B.L. Naprstek ◽  
S.C. Silverstein

Monolayers of bovine microvascular endothelial cells (BMECs) grown on connective tissue derived from human amniotic membrane were used to examine the transendothelial migration of human neutrophils in vitro. Neutrophils placed above these cultures migrated in response to a chemotactic gradient generated by placing 10(−7) M-formyl-methionyl-leucyl-phenyl-alanine (fMLP) below the cultures. Under these conditions, an average of 29 +/− 12% of the total population of neutrophils migrated beneath the endothelium after 1 or 2 h of incubation. Neutrophil migration in the absence of fMLP or in the presence of equal concentrations of fMLP above and below the cultures was less than 8% of the response to a 10(−7) M-fMLP gradient. Migration was a rapid event. Neutrophils began adhering to the apical surface of the endothelium within 2 min following exposure to an fMLP gradient; Ca2+ was required for this initial adhesion. Within 10 min, the majority of neutrophils associated with the BMEC-amnion cultures had migrated beneath the endothelial monolayer. Ultrastructural studies revealed that the initial adhesion between migrating neutrophils and endothelium was characterized by close contact between the two types of cell in focal areas. This close association was maintained as the neutrophils traversed the clefts between endothelial cells. Following their migration across the endothelium, neutrophils often were observed lying between the endothelium and its basement membrane. With time, the neutrophils penetrated the basement membrane and moved into the underlying amniotic connective tissue. To test the role of neutrophil proteinases in breaching endothelial and subendothelial barriers, migration was allowed to proceed in the presence of a variety of proteinase inhibitors, including p-nitrophenyl p'-guanidinobenzoate, soybean trypsin inhibitor, 6-aminocaproic acid, alpha 1-proteinase inhibitor, leupeptin, antipain and methoxysuccinyl alanine-alanine-proline-valine chloromethyl ketone. None of these had a significant effect on the number of neutrophils that migrated or the depth to which they penetrated the amniotic tissue as compared with controls. In contrast, pepstatin and chymostatin reduced migration in response to fMLP to 7% and 52% of control values, respectively. However, these two inhibitors did not affect migration in response to another chemoattractant, leukotriene B4. Migration was neither enhanced nor inhibited by the following treatments: (1) removal of plasminogen from the calf serum used in the assay medium and addition of polyclonal antibody to plasminogen; (2) addition of monoclonal or polyclonal antibody to plasminogen activator.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 4 (10) ◽  
pp. 973-982 ◽  
Author(s):  
S Klein ◽  
F G Giancotti ◽  
M Presta ◽  
S M Albelda ◽  
C A Buck ◽  
...  

During angiogenesis capillary endothelial cells undergo a coordinated set of modifications in their interactions with extracellular matrix components. In this study we have investigated the effect of the prototypical angiogenic factor basic fibroblast growth factor (bFGF) on the expression and function of several integrins in microvascular endothelial cells. Immunoprecipitation experiments with antibodies to individual subunits indicated that microvascular cells express at their surface several integrins. These include the alpha 1 beta 1, alpha 2 beta 1, and alpha 3 beta 1 laminin/collagen receptors; the alpha 6 beta 1 laminin receptor; the alpha 5 beta 1 and alpha v beta 1 fibronectin receptors; the alpha 6 beta 4 basement membrane receptor; and the alpha v beta 3 and alpha v beta 5 vitronectin receptors. Treatment with bFGF caused a significant increase in the surface expression of the alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1, alpha 6 beta 4, and alpha v beta 5 integrins. In contrast, the level of expression of the alpha 1 beta 1 and alpha v beta 3 integrins was decreased in bFGF-treated cells. Immunoprecipitation of metabolically labeled cells indicated that bFGF increases the biosynthesis of the alpha 3, alpha 5, alpha 6, beta 4, and beta 5 subunits and decreases the production of the alpha v and beta 3 subunits. These results suggest that bFGF modulates integrin expression by altering the biosynthesis of individual alpha or beta subunits. In accordance with the upregulation of several integrins observed in bFGF-treated cells, these cells adhered better to fibronectin, laminin, vitronectin, and type I collagen than did untreated cells. The largest differences in beta 1 integrin expression occurred approximately 72 h after exposure to bFGF, at a time when the expression of the endothelial cell-to-cell adhesion molecule endoCAM was also significantly upregulated. In contrast, a shorter exposure to bFGF (24-48 h) was required for the maximal induction of plasminogen activator production in the same cells. Taken together, these results show that bFGF causes significant changes in the level of expression and function of several integrins in microvascular endothelial cells.


2012 ◽  
Vol 82 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Zahide Cavdar ◽  
Mehtap Y. Egrilmez ◽  
Zekiye S. Altun ◽  
Nur Arslan ◽  
Nilgun Yener ◽  
...  

The main pathophysiology in cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Among the human matrix metalloproteinases (MMPs), MMP-2 and -9, known as gelatinases, are the key enzymes for degrading type IV collagen, which is the major component of the basal membrane that surrounds the cerebral blood vessel. In the present study, we investigated the effects of resveratrol on cytotoxicity, reactive oxygen species (ROS), and gelatinases (MMP-2 and -9) in human cerebral microvascular endothelial cells exposed to 6 hours of oxygen-glucose deprivation and a subsequent 24 hours of reoxygenation with glucose (OGD/R), to mimic ischemia/reperfusion in vivo. Lactate dehydrogenase increased significantly, in comparison to that in the normoxia group. ROS was markedly increased in the OGD/R group, compared to normoxia. Correspondingly, ROS was significantly reduced with 50 μM of resveratrol. The proMMP-2 activity in the OGD/R group showed a statistically significant increase from the control cells. Resveratrol preconditioning decreased significantly the proMMP-2 in the cells exposed to OGD/R in comparison to that in the OGD/R group. Our results indicate that resveratrol regulates MMP-2 activity induced by OGD/R via its antioxidant effect, implying a possible mechanism related to the neuroprotective effect of resveratrol.


Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
S Wrenger ◽  
N Aggarwal ◽  
E Frenzel ◽  
T Welte ◽  
S Janciauskiene

Sign in / Sign up

Export Citation Format

Share Document