scholarly journals Perturbation of the morphology of the trans-Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38.

1992 ◽  
Vol 116 (1) ◽  
pp. 85-94 ◽  
Author(s):  
B Reaves ◽  
G Banting

Brefeldin A (BFA) has a dramatic effect on the morphology of the Golgi apparatus and induces a rapid redistribution of Golgi proteins into the ER (Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 1989. Cell. 56:801-813). To date, no evidence that BFA affects the morphology of the trans-Golgi network (TGN) has been presented. We describe the results of experiments, using a polyclonal antiserum to a TGN specific integral membrane protein (TGN38) (Luzio, J.P., B. Brake, G. Banting, K. E. Howell, P. Braghetta, and K. K. Stanley. 1990. Biochem. J. 270:97-102), which demonstrate that incubation of cells with BFA does induce morphological changes to the TGN. However, rather than redistributing to the ER, the majority of the TGN collapses around the microtubule organizing center (MTOC). The effect of BFA upon the TGN is (a) independent of protein synthesis, (b) fully reversible (c) microtubule dependent (as shown in nocodazole-treated cells), and (d) relies upon the hydrolysis of GTP (as shown by performing experiments in the presence of GTP gamma S). ATP depletion reduces the ability of BFA to induce a redistribution of Golgi proteins into the ER; however, it has no effect upon the BFA-induced relocalizations of the TGN. These data confirm that the TGN is an organelle which is independent of the Golgi, and suggest a dynamic interaction between the TGN and microtubules which is centered around the MTOC.

1993 ◽  
Vol 106 (3) ◽  
pp. 789-802 ◽  
Author(s):  
M. Roa ◽  
V. Cornet ◽  
C.Z. Yang ◽  
B. Goud

Rab6 protein belongs to the Sec4/Ypt/rab subfamily of small GTP-binding proteins involved in intracellular membrane trafficking in yeast and mammalian cells. Its localization both in medial and trans-Golgi network prompted us to study the effects of brefeldin A (BFA) on rab6p redistribution. By two techniques, indirect immunofluorescence and cell fractionation, we investigated the fate of rab6p and compared it to other Golgi or trans-Golgi network markers in BHK-21 and NIH-3T3 cells. BFA, at 5 micrograms/ml, induced redistribution of rab6p according to a biphasic process: during the first 10–15 minutes, tubulo-vesicular structures--colabelled with a bona fide medial Golgi marker called CTR 433--were observed; these structures were then replaced by punctate diffuse staining, which was stable for up to 3 hours. The 110 kDa peripheral membrane protein beta-COP was released much more rapidly from the Golgi membranes, whereas the trans-Golgi network marker TGN 38 relocated to the microtubule organizing center. The kinetics of reversion of BFA action on these antigens was also followed by immunofluorescence. Consistent with these results, rab6 antigen, originally found as 40% in the cytosolic versus 60% in the particulate (P 150,000 g) fraction, became almost entirely cytosolic; moreover, it partitioned in the aqueous phase of Triton X-114 whereas the membrane fraction was detergent-soluble. Rab6p did not become part of the coatomers after its BFA-induced release from Golgi structures. Three requirements seemed to be necessary for such a release: integrity of the microtubules, presence of energy, and a hypothetical trimeric G protein, as revealed by the respective roles of nocodazole, ATP depletion, and sensitivity to aluminium fluoride. Finally, we have shown that BFA does not prevent attachment of newly synthesized rab6p to membranes.


1990 ◽  
Vol 270 (1) ◽  
pp. 97-102 ◽  
Author(s):  
J P Luzio ◽  
B Brake ◽  
G Banting ◽  
K E Howell ◽  
P Braghetta ◽  
...  

Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network.


1994 ◽  
Vol 266 (1) ◽  
pp. C254-C268 ◽  
Author(s):  
A. P. Morris ◽  
S. A. Cunningham ◽  
A. Tousson ◽  
D. J. Benos ◽  
R. A. Frizzell

The relationship between adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion and the cellular location of the cystic fibrosis transmembrane conductance regulator (CFTR) was determined in both polarized (Cl.19A) and unpolarized (parental) HT-29 colonocytes expressing similar levels of CFTR mRNA and protein. CFTR immunolocalized to the apical membrane domain of polarized colonocytes exhibiting cAMP-responsive Cl- secretion. In contrast, CFTR staining was perinuclear in unpolarized colonocytes, which gave little or no cAMP-stimulated Cl- conductance responses. Thus cAMP-stimulated Cl- secretion coincided with an apical localization of CFTR. Brefeldin A (BFA) was used to perturb glycoprotein targeting in these cells. In polarized colonocytes, BFA caused a reversible, time-dependent decrease in the Cl-conductance response to cAMP but not Ca2+. Apical CFTR redistributed into large coalesced intracellular vesicles, located within the same plane as the microtubule organizing center, a marker for the trans-Golgi network (TGN). In preconfluent monolayers or unpolarized HT-29 cells, BFA had no effect on CFTR staining, which remained perinuclear. Mature, Golgi-processed CFTR protein was isolated from both polarized and unpolarized colonocytes. Thus the mechanism for polarization-dependent apical membrane CFTR targeting and the acquisition of cAMP-dependent Cl- secretion lies at or beyond the late Golgi-TGN in epithelial cells.


1992 ◽  
Vol 283 (2) ◽  
pp. 313-316 ◽  
Author(s):  
B Reaves ◽  
A Wilde ◽  
G Banting

TGN38 is an integral membrane protein previously shown to be predominantly localized to the trans-Golgi network (TGN) of cells by virtue of a signal contained within its cytoplasmic ‘tail’ [Luzio, Brake, Banting, Howell, Braghetta & Stanley (1990) Biochem. J. 270, 97-102]. We now (i) describe the isolation of cDNA clones encoding an isoform of TGN38, (ii) present the sequence of that isoform and (iii) describe the production and use of antibodies which specifically recognize the new isoform. This isoform, designated TGN41, is also predominantly localized to the TGN. The only sequence differences between the protein coding regions of cDNA clones encoding TGN38 and those encoding TGN41 occur within the region specifying the cytoplasmic tails of the two proteins. The TGN localization signal is shown to be within the sequence common to both proteins.


1994 ◽  
Vol 301 (1) ◽  
pp. 69-73 ◽  
Author(s):  
M Horn ◽  
G Banting

Okadaic acid (OA) is a protein phosphatase inhibitor which has, among other properties, previously been shown to induce a fragmentation of the cisternae of the Golgi stack [for review, see Lucocq (1992) J. Cell Sci. 103, 875-880]. The effects of OA an reversible and mimic intracellular events which occur during mitosis. To date, due to a lack of endogenous marker proteins, the effects of OA on the trans-Golgi network (TGN) has not been studied. Certain drugs, e.g. Brefeldin A (BFA), have different effects on the morphology of the Golgi stack and the TGN; it is therefore relevant to ask what effect(s) OA has on the TGN. We now present data from a study in which we have used antibodies to TGN38, an integral membrane protein predominantly localized to the TGN of rat NRK cells [Luzio, Brake, Banting, Howell, Braghetta and Stanley (1990) Biochem. J. 270, 97-102], to investigate the effects of OA on this organelle. OA induces a reversible fragmentation of the TGN. This fragmentation occurs with similar kinetics to that observed within the Golgi stack, and is independent of protein synthesis. The sensitivity of the TGN to OA is similar to that of the Golgi stack. The fragmentation of the TGN induced by OA also leads to a 10-fold increase in the level of TGN38 expressed at the plasma membrane.


FEBS Letters ◽  
1992 ◽  
Vol 313 (3) ◽  
pp. 235-238 ◽  
Author(s):  
Andrew Wilde ◽  
Barbara Reaves ◽  
George Banting

2001 ◽  
Vol 114 (22) ◽  
pp. 4013-4024
Author(s):  
Jayasri Das Sarma ◽  
Rita A. Meyer ◽  
Fushan Wang ◽  
Valsamma Abraham ◽  
Cecilia W. Lo ◽  
...  

Cells that express multiple connexins have the capacity to form heteromeric (mixed) gap junction hemichannels. We used a dominant negative connexin construct, consisting of bacterial β-galactosidase fused to the C terminus of connexin43 (Cx43/β-gal), to examine connexin compatibility in NIH 3T3 cells. Cx43/β-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool induced by Cx43/β-gal colocalized with a medial Golgi apparatus marker and was readily disassembled by treatment with brefeldin A. This was unexpected, since previous studies indicated that Cx43 assembly into hexameric hemichannels occurs in the trans-Golgi network (TGN) and is sensitive to brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/β-gal were assembled into a subhexameric complex. Cx43/β-gal also specifically interacted with Cx46, but not Cx32, consistent with the ability of Cx43/β-gal to simultaneously inhibit multiple connexins. We confirmed that interactions between Cx43/β-gal and Cx46 reflect the ability of Cx43 and Cx46 to form heteromeric complexes, using HeLa and alveolar epithelial cells, which express both connexins. In contrast, ROS osteoblastic cells, which differentially sort Cx43 and Cx46, did not form Cx43/Cx46 heteromers. Thus, cells have the capacity to regulate whether or not compatible connexins intermix.


1996 ◽  
Vol 109 (12) ◽  
pp. 2811-2821 ◽  
Author(s):  
P.A. Gleeson ◽  
T.J. Anderson ◽  
J.L. Stow ◽  
G. Griffiths ◽  
B.H. Toh ◽  
...  

Transport vesicle formation requires the association of cytosolic proteins with the membrane. We have previously described a brefeldin-A sensitive, hydrophilic protein (p230), containing a very high frequency of heptad repeats, found in the cytosol and associated with Golgi membranes. We show here that p230 is localised on the trans-Golgi network, by immunogold labeling of HeLa cell cryosections using alpha 2,6 sialyltransferase as a compartment-specific marker. The role of G protein activators on the binding of p230 to Golgi membranes and in vesicle biogenesis has been investigated. Treatment of streptolysin-O permeabilised HeLa cells with either GTP gamma S or AlF4- resulted in accumulation of p230 on Golgi membranes. Furthermore, immunolabeling of isolated Golgi membranes treated with AlF4-, to induce the accumulation of vesicles, showed that p230 is predominantly localised to the cytoplasmic surface of trans-Golgi network-derived budding structures and small coated vesicles. p230-labeled vesicles have a thin (approximately 10 nm) electron dense cytoplasmic coat and could be readily distinguished from clathrin-coated vesicles. Dual immunogold labeling of perforated cells, or of cryosections of treated Golgi membranes, revealed that p230 and the trans-Golgi network-associated p200, which we show here to be distinct molecules, appear to be localised on separate populations of vesicles budding from the trans-Golgi network. These results strongly suggest the presence of distinct populations of non-clathrin coated vesicles derived from the trans-Golgi network. As p230 recycles between the cytosol and buds/vesicles of TGN membranes, a process regulated by G proteins, we propose that p230 is involved in the biogenesis of a specific population of non-clathrin coated vesicles.


1994 ◽  
Vol 297 (2) ◽  
pp. 289-295 ◽  
Author(s):  
H S Hundal ◽  
P J Bilan ◽  
T Tsakiridis ◽  
A Marette ◽  
A Klip

The effects of insulin-like growth factor I (IGF-I) on glucose and amino acid uptake were investigated in fully differentiated L6 muscle cells, in order to determine whether the two processes are functionally related. Transport of both glucose and amino acid (methylaminoisobutyric acid, MeAIB) was activated rapidly in response to IGF-I. Stimulation reached a peak within 30 min and was sustained for up to 90 min. Maximal activation of either glucose or MeAIB transport was achieved at 3 nM IGF-I; the half-maximal activation (ED50) of glucose transport was at 107 pM and that of MeAIB transport was at 36 pM. Stimulation of amino acid uptake occurred in the absence or presence of glucose, suggesting that this response is not secondary to increased glucose intake. Incubation of cells for 1 h with Brefeldin A (5 micrograms/ml), which disassembles the Golgi apparatus and inhibits the secretory pathway in eukaryotic cells, had no effect on the acute IGF-I activation of glucose and MeAIB transport. Moreover, Brefeldin A caused wide redistribution of the trans-Golgi antigen TGN38, as assessed by subcellular fractionation, without affecting the distribution of glucose transporters. The finding that the degree of activation, time response and sensitivity to IGF-I and Brefeldin A were similar for both glucose and MeAIB transport suggests commonalities in the IGF-I mechanism of recruitment of glucose transporters and stimulation of amino acid transport through System A. An integral trans-Golgi network does not appear to be required for the acute IGF-I stimulation of glucose or amino acid transport, even though stimulation of glucose transport occurs through recruitment of glucose transporters from intracellular stores in these cells. We propose that the donor site of glucose transporters (and perhaps of amino acid transporters) involved in the acute response to IGF-I lies beyond the trans-Golgi network, perhaps in an endosomal compartment in close proximity to the plasma membrane.


1993 ◽  
Vol 4 (1) ◽  
pp. 93-105 ◽  
Author(s):  
B Reaves ◽  
M Horn ◽  
G Banting

TGN38 and TGN41 are isoforms of an integral membrane protein (TGN38/41) that is predominantly localized to the trans-Golgi network (TGN) of normal rat kidney cells. Polyclonal antisera to TGN38/41 have been used to monitor its appearance at, and removal from, the surface of control and Brefeldin A (BFA)-treated cells. Antibodies that recognize the lumenal domain of TGN38/41 are capable of specific binding to the surface of both control and BFA-treated cells. In both control and BFA-treated cells internalized TGN38/41 is targeted to the TGN; however, there are differences in 1) the morphology of the intracellular structures through which TGN38/41 passes and 2) the kinetics of internalization. These data demonstrate that TGN38/41 cycles between the plasma membrane and the TGN in control and BFA-treated cells and suggest that recycling pathways between the plasma membrane and the TGN exist for predominantly TGN proteins as well as those that normally cycle to other intracellular compartments. They also demonstrate that addition of BFA not only alters the morphology and localization of the TGN but also the kinetics of endocytosis.


Sign in / Sign up

Export Citation Format

Share Document