Polarization-dependent apical membrane CFTR targeting underlies cAMP-stimulated Cl- secretion in epithelial cells

1994 ◽  
Vol 266 (1) ◽  
pp. C254-C268 ◽  
Author(s):  
A. P. Morris ◽  
S. A. Cunningham ◽  
A. Tousson ◽  
D. J. Benos ◽  
R. A. Frizzell

The relationship between adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion and the cellular location of the cystic fibrosis transmembrane conductance regulator (CFTR) was determined in both polarized (Cl.19A) and unpolarized (parental) HT-29 colonocytes expressing similar levels of CFTR mRNA and protein. CFTR immunolocalized to the apical membrane domain of polarized colonocytes exhibiting cAMP-responsive Cl- secretion. In contrast, CFTR staining was perinuclear in unpolarized colonocytes, which gave little or no cAMP-stimulated Cl- conductance responses. Thus cAMP-stimulated Cl- secretion coincided with an apical localization of CFTR. Brefeldin A (BFA) was used to perturb glycoprotein targeting in these cells. In polarized colonocytes, BFA caused a reversible, time-dependent decrease in the Cl-conductance response to cAMP but not Ca2+. Apical CFTR redistributed into large coalesced intracellular vesicles, located within the same plane as the microtubule organizing center, a marker for the trans-Golgi network (TGN). In preconfluent monolayers or unpolarized HT-29 cells, BFA had no effect on CFTR staining, which remained perinuclear. Mature, Golgi-processed CFTR protein was isolated from both polarized and unpolarized colonocytes. Thus the mechanism for polarization-dependent apical membrane CFTR targeting and the acquisition of cAMP-dependent Cl- secretion lies at or beyond the late Golgi-TGN in epithelial cells.

1992 ◽  
Vol 116 (1) ◽  
pp. 85-94 ◽  
Author(s):  
B Reaves ◽  
G Banting

Brefeldin A (BFA) has a dramatic effect on the morphology of the Golgi apparatus and induces a rapid redistribution of Golgi proteins into the ER (Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 1989. Cell. 56:801-813). To date, no evidence that BFA affects the morphology of the trans-Golgi network (TGN) has been presented. We describe the results of experiments, using a polyclonal antiserum to a TGN specific integral membrane protein (TGN38) (Luzio, J.P., B. Brake, G. Banting, K. E. Howell, P. Braghetta, and K. K. Stanley. 1990. Biochem. J. 270:97-102), which demonstrate that incubation of cells with BFA does induce morphological changes to the TGN. However, rather than redistributing to the ER, the majority of the TGN collapses around the microtubule organizing center (MTOC). The effect of BFA upon the TGN is (a) independent of protein synthesis, (b) fully reversible (c) microtubule dependent (as shown in nocodazole-treated cells), and (d) relies upon the hydrolysis of GTP (as shown by performing experiments in the presence of GTP gamma S). ATP depletion reduces the ability of BFA to induce a redistribution of Golgi proteins into the ER; however, it has no effect upon the BFA-induced relocalizations of the TGN. These data confirm that the TGN is an organelle which is independent of the Golgi, and suggest a dynamic interaction between the TGN and microtubules which is centered around the MTOC.


1993 ◽  
Vol 106 (3) ◽  
pp. 789-802 ◽  
Author(s):  
M. Roa ◽  
V. Cornet ◽  
C.Z. Yang ◽  
B. Goud

Rab6 protein belongs to the Sec4/Ypt/rab subfamily of small GTP-binding proteins involved in intracellular membrane trafficking in yeast and mammalian cells. Its localization both in medial and trans-Golgi network prompted us to study the effects of brefeldin A (BFA) on rab6p redistribution. By two techniques, indirect immunofluorescence and cell fractionation, we investigated the fate of rab6p and compared it to other Golgi or trans-Golgi network markers in BHK-21 and NIH-3T3 cells. BFA, at 5 micrograms/ml, induced redistribution of rab6p according to a biphasic process: during the first 10–15 minutes, tubulo-vesicular structures--colabelled with a bona fide medial Golgi marker called CTR 433--were observed; these structures were then replaced by punctate diffuse staining, which was stable for up to 3 hours. The 110 kDa peripheral membrane protein beta-COP was released much more rapidly from the Golgi membranes, whereas the trans-Golgi network marker TGN 38 relocated to the microtubule organizing center. The kinetics of reversion of BFA action on these antigens was also followed by immunofluorescence. Consistent with these results, rab6 antigen, originally found as 40% in the cytosolic versus 60% in the particulate (P 150,000 g) fraction, became almost entirely cytosolic; moreover, it partitioned in the aqueous phase of Triton X-114 whereas the membrane fraction was detergent-soluble. Rab6p did not become part of the coatomers after its BFA-induced release from Golgi structures. Three requirements seemed to be necessary for such a release: integrity of the microtubules, presence of energy, and a hypothetical trimeric G protein, as revealed by the respective roles of nocodazole, ATP depletion, and sensitivity to aluminium fluoride. Finally, we have shown that BFA does not prevent attachment of newly synthesized rab6p to membranes.


1995 ◽  
Vol 268 (2) ◽  
pp. C425-C433 ◽  
Author(s):  
M. J. Stutts ◽  
E. R. Lazarowski ◽  
A. M. Paradiso ◽  
R. C. Boucher

Luminal extracellular ATP evoked a bumetanide-sensitive short-circuit current in cultured T84 cell epithelia (90.2 +/- 18.2 microA/cm2 at 100 microM ATP, apparent 50% effective concentration, 11.5 microM). ATP appeared to increase the Cl- conductance of the apical membrane but not the driving force for Cl- secretion determined by basolateral membrane K+ conductance. Specifically, the magnitude of Cl- secretion stimulated by ATP was independent of basal current, and forskolin pretreatment abolished subsequent stimulation of Cl- secretion by ATP. Whereas ATP stimulated modest production of adenosine 3',5'-cyclic monophosphate (cAMP) by T84 cells, ATP caused smaller increases in intracellular Ca2+ and inositol phosphate activities than the Ca(2+)-signaling Cl- secretagogue carbachol. An inhibitor of 5'-nucleotidase, alpha,beta-methyleneadenosine 5'-diphosphate, blocked most of the response to luminal ATP. The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline blocked both the luminal ATP-dependent generation of cAMP and Cl- secretion when administered to the luminal but not submucosal bath. These results demonstrate that the Cl- secretion stimulated by luminal ATP is mediated by a A2-adenosine receptor located on the apical cell membrane. Thus metabolism of extracellular ATP to adenosine regulates the activity of cystic fibrosis transmembrane conductor regulator (CFTR) in the apical membrane of polarized T84 cells.


1996 ◽  
Vol 271 (2) ◽  
pp. C612-C619 ◽  
Author(s):  
D. Merlin ◽  
X. Guo ◽  
K. Martin ◽  
C. Laboisse ◽  
D. Landis ◽  
...  

HT29-Cl.16E and HT29-Cl.19A are two different subcloned cell lines derived from the human adenocarcinoma cell line HT-29. They are similar in their ability to grow and differentiate to polarized epithelial cells but differ in that HT29-Cl.16E is goblet cell-like with many mucin granules, whereas HT29-Cl.19A lacks mucin granules. Extracellular ATP stimulates Cl- secretion in both cell lines through luminal purinergic P20 receptors and, in HT29-Cl.16E, also mucin secretion release. To evaluate whether fusion of mucin granules is associated with an increase in Cl- conductance of the plasma membrane, the effects of two fusion inhibitors on luminal Cl- conductance were measured. Blockage of actin depolymerization with phalloidin (1 microM) inhibited purinergically stimulated but not adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated luminal Cl- efflux by 50% in HT29-Cl.16E. The same treatment was without effect in HT29-Cl.19A. The fungal metabolite wortmannin, which is an inhibitor of regulated exocytosis in leukocytes, at 100 nM inhibited Cl- secretion by 70% in HT29-Cl.16E. This inhibition was not a direct effect on purinergically stimulated Cl- channels because wortmannin concentrations of up to 1 microM did not affect the secretory response in HT29-Cl.19A. The wortmannin inhibition of Cl- secretion is associated with an inhibition of granule fusion as judged by electron microscopy. The differential inhibition of Cl- secretion in the related HT-29 clones that differ with respect to the presence of mucin granules indicates that 1) the granule fusion inhibitors, phalloidin and wortmannin, have no direct inhibitory effects on purinergically and cAMP-activated Cl- channels, 2) a major portion of purinergically but not cAMP-activated Cl- channels is associated with granule fusion in HT29-Cl.16E, and 3) the signaling pathways for Cl- secretion and granule fusion are not completely identical.


2008 ◽  
Vol 82 (13) ◽  
pp. 6109-6119 ◽  
Author(s):  
Rachel B. Life ◽  
Eun-Gyung Lee ◽  
Scott W. Eastman ◽  
Maxine L. Linial

ABSTRACT Foamy viruses (FVs) assemble using pathways distinct from those of orthoretroviruses. FV capsid assembly takes place near the host microtubule-organizing center (MTOC). Assembled capsids then migrate by an unknown mechanism to the trans-Golgi network to colocalize with the FV glycoprotein, Env. Interaction with Env is required for FV capsid egress from cells; the amino terminus of FV Gag contains a cytoplasmic targeting/retention signal that is responsible for targeting assembly to the MTOC. A mutant Gag was constructed by addition of a myristylation (M) signal in an attempt to target assembly to the plasma membrane and potentially overcome the dependence upon Env for budding (S. W. Eastman and M. L. Linial, J. Virol. 75:6857-6864, 2001). Using this and additional mutants, we now show that assembly is not redirected to the plasma membrane. Addition of an M signal leads to gross morphological defects. The aberrant particles still assemble near the MTOC but do not produce infectious virus. Although extracellular Gag can be detected in a pelletable form in the absence of Env, the mutant particles contain very little genomic RNA and are less dense. Our analyses indicate that the amino terminus of Gag contains an Env interaction domain that is critical for bona fide egress of assembled capsids.


1996 ◽  
Vol 271 (1) ◽  
pp. L159-L165 ◽  
Author(s):  
M. R. Van Scott ◽  
M. D. Smith ◽  
C. A. Welch ◽  
C. Bentzel ◽  
W. J. Metzger

Polycationic proteins alter electrolyte transport by epithelium and endothelium, and in asthma are thought to disrupt the airway epithelium and contribute to hyperresponsiveness and airway plugging. In the present study, we used primary cultures of human nasal epithelial cells to investigate the response of respiratory tract epithelium to luminal presentation of a polycationic protein, protamine. Protamine (100 micrograms/ml) in the apical bathing solution had no significant effect on basal transepithelial resistance (Rt) but decreased short-circuit current (Isc) and hyperpolarized the apical membrane, indicating that Na+ absorption had been inhibited. Pretreating with amiloride inverted the response to protamine, resulting in an increase in Isc, depolarization of the apical membrane, and decrease in the fractional resistance of the apical membrane (fRa). The increase in Isc was inhibited by pretreatment with bumetanide. These results indicated that protamine augmented amiloride-induced Cl- secretion. Induction of Cl- secretion by bathing the apical surface in 3 mM Cl(-)-Ringer solution similarly resulted in protamine-induced depolarization of the apical membrane. Heparin precipitated protamine from solution and reversed the Isc responses. In summary, low concentrations of polycationic protein can alter electrolyte transport by human airway epithelium without desquamation, and the response is dependent on the secretory state of the tissue.


1996 ◽  
Vol 314 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Clara FRANCÍ ◽  
Gustavo EGEA ◽  
Rosa ARRIBAS ◽  
Arnold J. J. REUSER ◽  
Francisco X. REAL

We have previously described the abnormal localization of resident Golgi proteins and O-glycans in the rough endoplasmic reticulum of mucin-secreting HT-29 M6 colon cancer cells, suggesting altered protein trafficking in these cells [Egea, Franci~A, Gambús, Lesuffleur, Zweibaum and Real (1993) J. Cell Sci. 105, 819–830]. In the present work, we have chosen lysosomal α-glucosidase as a reporter to examine the intracellular traffic of glycoproteins in M6 cells. We have compared the synthesis and processing of α-glucosidase in mucin-secreting M6 cells and in Caco-2 colon cancer cells, the latter resembling normal absorptive intestinal epithelium. Our results show that α-glucosidase processing and secretion is markedly delayed in M6 cells as compared with Caco-2 cells or normal fibroblasts, and this delay is caused by an accumulation of α-glucosidase precursor form in the trans-Golgi network. Furthermore, treatment of Caco-2 cells with brefeldin A led to changes in α-glucosidase maturation similar to those observed in untreated M6 cells. To determine whether altered processing occurs in other cultured cells, a panel of cancer cell lines and cultures from normal exocrine pancreas were examined. In pancreas-derived cultures, α-glucosidase showed a processing pattern different from that described until now. Only HT-29 cells and HT-29-derived subpopulations displayed a defect in α-glucosidase maturation. In conclusion, α-glucosidase processing is more diverse than has previously been described; this finding may have tissue-specific functional implications.


1993 ◽  
Vol 265 (3) ◽  
pp. C688-C694 ◽  
Author(s):  
A. P. Morris ◽  
S. A. Cunningham ◽  
D. J. Benos ◽  
R. A. Frizzell

Cystic fibrosis (CF) impairs Cl- secretion across epithelial tissues and is caused by mutations in an N-linked glycoprotein, the cystic fibrosis transmembrane conductance regulator (CFTR). We modified the glycosylation pattern of CFTR using inhibitors of oligosaccharide processing and determined their effects on both agonist-induced Cl- secretion and CFTR location in human colon (HT-29) cell lines. In both polarized and unpolarized HT-29 cells, immunoprecipitation of cell extracts using a monoclonal antibody against CFTR gave a single band at 170 kDa. Inhibitors of N-linked glycosylation reduced the molecular mass of this band: swainsonine by 10 kDa, deoxymannojirimycin by 30 kDa, and deoxynojirimycin by 10-20 kDa. However, the transepithelial Cl- current and conductance stimulated by adenosine 3',5'-cyclic monophosphate (cAMP)- or Ca(2+)-dependent secretagogues was not affected. In the polarized cells, CFTR was localized in the apical membrane domain. Treatment of the monolayers with glycoprocessing inhibitors did not affect CFTR's location. Thus, in human colonocytes that endogenously express CFTR, the extent of CFTR glycosylation does not influence the targeting of CFTR to the apical membrane domain or its function as an agonist-stimulated Cl- channel.


1992 ◽  
Vol 263 (1) ◽  
pp. C187-C193 ◽  
Author(s):  
J. L. Garvin ◽  
K. R. Spring

Na and Cl movement through the apical membrane of Necturus gallbladder epithelium was investigated using electrophysiological and light microscopic measurements. Changes in membrane potential difference, fractional resistance of the apical membrane, and transepithelial resistance caused by changes in apical bath Cl concentration revealed the presence of a Cl conductance in the apical membrane of control tissues that was apparently not present in the preparations studied by other investigators. This Cl conductance was blocked by bumetanide (10(-5) M) or by the inhibitor of adenosine 3',5'-cyclic monophosphate (cAMP) action, the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS; 0.5 mM). Treatment of the tissues with Rp-cAMPS also eliminated bumetanide-sensitive cell swelling in the presence of ouabain and activated an amiloride-sensitive swelling, changes consistent with inhibition of NaCl cotransport and the activation of Na-H and Cl-HCO3 exchange. We conclude that the mode of NaCl entry into Necturus gallbladder epithelial cells is determined by the level of cAMP. When cAMP levels are high, entry occurs by NaCl cotransport; when cAMP levels are low, parallel exchange of Na-H and Cl-HCO3 predominates. These observations explain the previous disagreements about the mode of NaCl entry into Necturus gallbladder epithelial cells.


1992 ◽  
Vol 263 (2) ◽  
pp. C348-C356 ◽  
Author(s):  
L. L. Clarke ◽  
R. C. Boucher

Chloride secretion across cystic fibrosis (CF) airway epithelia is effectively regulated by pathways associated with intracellular Ca2+ metabolism, but not by mechanisms dependent on protein kinase A or C. In a search for therapeutically useful agonists, we investigated the effects of extracellular ATP on the Cl- secretory process in human normal and CF nasal epithelial cultures with double-barreled Cl- selective microelectrodes. When applied to the basolateral membrane of normal, but not CF, nasal epithelium, extracellular ATP (10(-4) M) stimulated a small increase in Cl- secretion that was primarily associated with a hyperpolarizing conductance in the basolateral membrane. In contrast, ATP applied to the apical (luminal) membrane of either normal or CF nasal epithelium stimulated a greater increase in Cl- secretion that was associated with activation of an apical membrane Cl- conductance. The increases in Cl- current and apical conductance were greater in CF tissues and attained maximal values similar to normal nasal epithelium. We conclude 1) that basolateral application of ATP indirectly induces Cl- secretion by activating a basolateral (K+) conductance and is an effective secretagogue only in normal nasal epithelium and 2) that luminally applied ATP is an effective Cl- secretagogue that activates the apical membrane Cl- conductance of normal and CF nasal epithelia to an equivalent level.


Sign in / Sign up

Export Citation Format

Share Document