scholarly journals Transfection of nonmuscle beta- and gamma-actin genes into myoblasts elicits different feedback regulatory responses from endogenous actin genes

1992 ◽  
Vol 117 (4) ◽  
pp. 787-797 ◽  
Author(s):  
C Lloyd ◽  
G Schevzov ◽  
P Gunning

We have examined the role of feedback-regulation in the expression of the nonmuscle actin genes. C2 mouse myoblasts were transfected with the human beta- and gamma-actin genes. In gamma-actin transfectants we found that the total actin mRNA and protein pools remained unchanged. Increasing levels of human gamma-actin expression resulted in a progressive down-regulation of mouse beta- and gamma-actin mRNAs. Transfection of the beta-actin gene resulted in an increase in the total actin mRNA and protein pools and induced an increase in the levels of mouse beta-actin mRNA. In contrast, transfection of a beta-actin gene carrying a single-point mutation (beta sm) produced a feedback-regulatory response similar to that of the gamma-actin gene. Expression of a beta-actin gene encoding an unstable actin protein had no impact on the endogenous mouse actin genes. This suggests that the nature of the encoded actin protein determines the feedback-regulatory response of the mouse genes. The role of the actin cytoskeleton in mediating this feedback-regulation was evaluated by disruption of the actin network with Cytochalasin D. We found that treatment with Cytochalasin D abolished the down-regulation of mouse gamma-actin in both the gamma- and beta sm-actin transfectants. In contrast, a similar level of increase was observed for the mouse beta-actin mRNA in both control and transfected cells. These experiments suggest that the down-regulation of mouse gamma-actin mRNA is dependent on the organization of the actin cytoskeleton. In addition, the mechanism responsible for the down-regulation of beta-actin may be distinct from that governing gamma-actin. We conclude that actin feedback-regulation provides a biochemical assay for differences between the two nonmuscle actin genes.

1984 ◽  
Vol 4 (10) ◽  
pp. 1961-1969
Author(s):  
J Leavitt ◽  
P Gunning ◽  
P Porreca ◽  
S Y Ng ◽  
C S Lin ◽  
...  

There are more than 20 beta-actin-specific sequences in the human genome, many of which are pseudogenes. To facilitate the isolation of potentially functional beta-actin genes, we used the new method of B. Seed (Nucleic Acids Res. 11:2427-2446, 1983) for selecting genomic clones by homologous recombination. A derivative of the pi VX miniplasmid, pi AN7 beta 1, was constructed by insertion of the 600-base-pair 3' untranslated region of the beta-actin mRNA expressed in human fibroblasts. Five clones containing beta-actin sequences were selected from an amplified human fetal gene library by homologous recombination between library phage and the miniplasmid. One of these clones contained a complete beta-actin gene with a coding sequence identical to that determined for the mRNA of human fibroblasts. A DNA fragment consisting of mostly intervening sequences from this gene was then used to identify 13 independent recombinant copies of the analogous gene from two specially constructed gene libraries, each containing one of the two types of mutant beta-actin genes found in a line of neoplastic human fibroblasts. The amino acid and nucleotide sequences encoded by the unmutated gene predict that a guanine-to-adenine transition is responsible for the glycine-to-aspartic acid mutation at codon 244 and would also result in the loss of a HaeIII site. Detection of this HaeIII polymorphism among the fibroblast-derived clones verified the identity of the beta-actin gene expressed in human fibroblasts.


1987 ◽  
Vol 7 (7) ◽  
pp. 2467-2476
Author(s):  
J Leavitt ◽  
S Y Ng ◽  
M Varma ◽  
G Latter ◽  
S Burbeck ◽  
...  

Mutant human beta-actin genes were introduced into normal human (KD) fibroblasts and the derivative cell line HuT-12, which is immortalized but nontumorigenic, to test their ability to promote conversion to the tumorigenic state. Transfected substrains of HuT-12 fibroblasts that expressed abundant levels of mutant beta-actin (Gly-244----Asp-244) produced subcutaneous tumors in athymic mice after long latent periods (1.5 to 3 months). However, transfected substrains of KD fibroblasts retained their normal finite life span in culture and consequently were incapable of producing tumors. Substrains of HuT-12 cells transfected with the wild-type beta-actin gene and some transfected strains that expressed low or undetectable levels of mutant beta-actin did not produce tumors. Cell lines derived from transfectant cell tumors always exhibited elevated synthesis of the mutant beta-actin, ranging from 145 to 476% of the level expressed by the transfected cells that were inoculated to form the tumor. In general, primary transfectant cells that expressed the highest levels of mutant beta-actin were more tumorigenic than strains that expressed lower levels. The tumor-derived strains were stable in tumorigenicity and produced tumors with shortened latent periods of only 2 to 4 weeks. These findings imply that the primary transfectant strains develop subpopulations of cells that are selected to form tumors because of their elevated rate of exogenous mutant beta-actin synthesis. Actin synthesis and accumulation of gamma-actin mRNA from the endogenous beta- and gamma-actin genes were diminished in tumor-derived strains, apparently to compensate for elevated mutant beta-actin synthesis and maintain the normal cellular concentration of actin. Synthesis of the transformation-sensitive tropomyosin isoforms was decreased along with mutant beta-actin expression. Such modulations in tropomyosin synthesis are characteristically seen in transformation of avian, rodent, and human fibroblasts. Our results suggest that this mutant beta-actin contributes to the neoplastic phenotype of immortalized human fibroblasts by imposing a cytoarchitectural defect and inducing abnormal expression of cytoskeletal tropomyosins.


1992 ◽  
Vol 117 (4) ◽  
pp. 775-785 ◽  
Author(s):  
G Schevzov ◽  
C Lloyd ◽  
P Gunning

The impact of the human beta- and gamma-actin genes on myoblast cytoarchitecture was examined by their stable transfection into mouse C2 myoblasts. Transfectant C2 clones expressing high levels of human beta-actin displayed increases in cell surface area. In contrast, C2 clones with high levels of human gamma-actin expression showed decreases in cell surface area. The changes in cell morphology were accompanied by changes in actin stress-fiber organization. The beta-actin transfectants displayed well-defined filamentous organization of actin; whereas the gamma-actin transfectants displayed a more diffuse organization of the actin cables. The role of the beta-actin protein in generating the enlarged cell phenotype was examined by transfecting a mutant form of the human beta-actin gene. Transfectant cells were shown to incorporate the aberrant actin protein into stress-fiber-like structures. High level expression of the mutant beta-actin produced decreases in cell surface area and disruption of the actin microfilament network similar to that seen with transfection of the gamma-actin gene. In contrast, transfection of another mutant form of the beta-actin gene which encodes an unstable protein had no impact on cell morphology or cytoarchitecture. These results strongly suggest that it is the nature of the encoded protein that determines the morphological response of the cell. We conclude that the relative gene expression of beta- and gamma-actin is of relevance to the control of myoblast cytoarchitecture. In particular, we conclude that the beta- and gamma-actin genes encode functionally distinct cytoarchitectural information.


1984 ◽  
Vol 4 (10) ◽  
pp. 1961-1969 ◽  
Author(s):  
J Leavitt ◽  
P Gunning ◽  
P Porreca ◽  
S Y Ng ◽  
C S Lin ◽  
...  

There are more than 20 beta-actin-specific sequences in the human genome, many of which are pseudogenes. To facilitate the isolation of potentially functional beta-actin genes, we used the new method of B. Seed (Nucleic Acids Res. 11:2427-2446, 1983) for selecting genomic clones by homologous recombination. A derivative of the pi VX miniplasmid, pi AN7 beta 1, was constructed by insertion of the 600-base-pair 3' untranslated region of the beta-actin mRNA expressed in human fibroblasts. Five clones containing beta-actin sequences were selected from an amplified human fetal gene library by homologous recombination between library phage and the miniplasmid. One of these clones contained a complete beta-actin gene with a coding sequence identical to that determined for the mRNA of human fibroblasts. A DNA fragment consisting of mostly intervening sequences from this gene was then used to identify 13 independent recombinant copies of the analogous gene from two specially constructed gene libraries, each containing one of the two types of mutant beta-actin genes found in a line of neoplastic human fibroblasts. The amino acid and nucleotide sequences encoded by the unmutated gene predict that a guanine-to-adenine transition is responsible for the glycine-to-aspartic acid mutation at codon 244 and would also result in the loss of a HaeIII site. Detection of this HaeIII polymorphism among the fibroblast-derived clones verified the identity of the beta-actin gene expressed in human fibroblasts.


1987 ◽  
Vol 7 (7) ◽  
pp. 2467-2476 ◽  
Author(s):  
J Leavitt ◽  
S Y Ng ◽  
M Varma ◽  
G Latter ◽  
S Burbeck ◽  
...  

Mutant human beta-actin genes were introduced into normal human (KD) fibroblasts and the derivative cell line HuT-12, which is immortalized but nontumorigenic, to test their ability to promote conversion to the tumorigenic state. Transfected substrains of HuT-12 fibroblasts that expressed abundant levels of mutant beta-actin (Gly-244----Asp-244) produced subcutaneous tumors in athymic mice after long latent periods (1.5 to 3 months). However, transfected substrains of KD fibroblasts retained their normal finite life span in culture and consequently were incapable of producing tumors. Substrains of HuT-12 cells transfected with the wild-type beta-actin gene and some transfected strains that expressed low or undetectable levels of mutant beta-actin did not produce tumors. Cell lines derived from transfectant cell tumors always exhibited elevated synthesis of the mutant beta-actin, ranging from 145 to 476% of the level expressed by the transfected cells that were inoculated to form the tumor. In general, primary transfectant cells that expressed the highest levels of mutant beta-actin were more tumorigenic than strains that expressed lower levels. The tumor-derived strains were stable in tumorigenicity and produced tumors with shortened latent periods of only 2 to 4 weeks. These findings imply that the primary transfectant strains develop subpopulations of cells that are selected to form tumors because of their elevated rate of exogenous mutant beta-actin synthesis. Actin synthesis and accumulation of gamma-actin mRNA from the endogenous beta- and gamma-actin genes were diminished in tumor-derived strains, apparently to compensate for elevated mutant beta-actin synthesis and maintain the normal cellular concentration of actin. Synthesis of the transformation-sensitive tropomyosin isoforms was decreased along with mutant beta-actin expression. Such modulations in tropomyosin synthesis are characteristically seen in transformation of avian, rodent, and human fibroblasts. Our results suggest that this mutant beta-actin contributes to the neoplastic phenotype of immortalized human fibroblasts by imposing a cytoarchitectural defect and inducing abnormal expression of cytoskeletal tropomyosins.


1985 ◽  
Vol 5 (5) ◽  
pp. 1151-1162
Author(s):  
D J Bergsma ◽  
K S Chang ◽  
R J Schwartz

We identified a novel chicken actin gene. The actin protein deduced from its nucleotide sequence very closely resembles the vertebrate cytoplasmic actins; accordingly, we classified this gene as a nonmuscle type. We adopted the convention for indicating the nonmuscle actins of the class Amphibia (Vandekerckhove et al., J. Mol. Biol. 152:413-426) and denoted this gene as type 5. RNA blot analysis demonstrated that the type 5 actin mRNA transcripts accumulate in adult tissues in a pattern indicative of a nonmuscle actin gene. Genomic DNA blots indicated that the type 5 actin is a single copy gene and a distinct member of the chicken actin multigene family. Inspection of the nucleotide sequence revealed many features that distinguished the type 5 gene from all other vertebrate actin genes examined to date. These unique characteristics include: (i) an initiation Met codon preceding an Ala codon, a feature previously known only in plant actins, (ii) a single intron within the 5' untranslated region, with no interruptions in the coding portion of the gene, and (iii) an atypical Goldberg-Hogness box (ATAGAA) preceding the mRNA initiation terminus. These unusual features have interesting implications for actin gene diversification during evolution.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 393-402 ◽  
Author(s):  
T.J. Mohun ◽  
N. Garrett

The complete nucleotide sequence of two Xenopus actin genes encoding cytoskeletal protein isoforms has been determined. Transcripts from these genes are remarkably similar in nucleotide sequence throughout their length and code for type-5 and type-8 cytoskeletal actins. Both share some sequence homology with human gamma-actin mRNA within the 3′ untranslated region but none with the equivalent region of any vertebrate beta-actin transcript. The promoter regions of the two Xenopus genes are virtually identical from the cap site to the CCAAT box and show extensive homology further upstream. Despite such similarity, the two genes are divergently expressed during embryonic development. The type-5 actin gene is expressed in all regions of the developing embryo whilst the type-8 gene is coregulated with the muscle-specific skeletal actin gene. In common with mammalian and avian cytoskeletal actin counterparts, the Xenopus genes possess a conserved sequence within their promoter that has previously been identified as a transcription-factor-binding site.


1988 ◽  
Vol 107 (6) ◽  
pp. 2575-2586 ◽  
Author(s):  
D L Ruzicka ◽  
R J Schwartz

The expression of cytoplasmic beta-actin and cardiac, skeletal, and smooth muscle alpha-actins during early avian cardiogenesis was analyzed by in situ hybridization with mRNA-specific single-stranded DNA probes. The cytoplasmic beta-actin gene was ubiquitously expressed in the early chicken embryo. In contrast, the alpha-actin genes were sequentially activated in avian cardiac tissue during the early stages of heart tube formation. The accumulation of large quantities of smooth muscle alpha-actin transcripts in epimyocardial cells preceded the expression of the sarcomeric alpha-actin genes. The accumulation of skeletal alpha-actin mRNAs in the developing heart lagged behind that of cardiac alpha-actin by several embryonic stages. At Hamburger-Hamilton stage 12, the smooth muscle alpha-actin gene was selectively down-regulated in the heart such that only the conus, which subsequently participates in the formation of the vascular trunks, continued to express this gene. This modulation in smooth muscle alpha-actin gene expression correlated with the beginning of coexpression of sarcomeric alpha-actin transcripts in the epimyocardium and the onset of circulation in the embryo. The specific expression of the vascular smooth muscle alpha-actin gene marks the onset of differentiation of cardiac cells and represents the first demonstration of coexpression of both smooth muscle and striated alpha-actin genes within myogenic cells.


1988 ◽  
Vol 8 (5) ◽  
pp. 2166-2176 ◽  
Author(s):  
M F Ben Amar ◽  
A Pays ◽  
P Tebabi ◽  
B Dero ◽  
T Seebeck ◽  
...  

In Trypanosoma brucei, the actin gene is present in a cluster of two, three, or four tandemly linked copies, depending on the strain. Each cluster seems to exist in two allelic versions, as suggested by the polymorphism of both gene number and restriction fragment length in the DNA from cloned trypanosomes. The amplification of the gene copy number probably occurs through unequal sister chromatid exchange. The chromosomes harboring the actin genes belong to the large size class. The coding sequence was 1,128 nucleotides long and showed 60 to 70% homology to other eucaryotic actin genes. Surprisingly, this homology seemed weaker with Trypanosoma congolense, Trypanosoma cruzi, Trypanosoma vivax, Trypanosoma mega, or Leishmania actin-specific sequences. The mRNA was around 1.6 kilobases long and was synthesized at the same level in bloodstream and procyclic forms of the parasite. Large RNA precursors, up to 7.7 kilobases, were found in a pattern identical in strains containing either two or three gene copies. Probing of the flanking regions of the gene with either steady-state or in vitro transcripts, as well as S1 nuclease protection and primer extension experiments, allowed mapping of the 3' splice site of the actin mRNA, 38 nucleotides upstream from the translation initiation codon. A variably sized poly(dT) tract was found about 30 base pairs ahead of the splice site. The largest detected actin mRNA precursor seemed to give rise to at least two additional stable mRNAs. The RNA polymerase transcribing the actin gene exhibited the same sensitivity to inhibition by alpha-amanitin as that transcribing both the spliced leader and the bulk of polyadenylated mRNAs.


2016 ◽  
Vol 130 (24) ◽  
pp. 2317-2327 ◽  
Author(s):  
Chang-Yien Chan ◽  
Kar-Hui Ng ◽  
Jinmiao Chen ◽  
Jinhua Lu ◽  
Caroline Guat-Lay Lee ◽  
...  

Podocyte foot process effacement and proteinuria seen in our interleukin-13 (IL-13) overexpression rat model of minimal change-like nephropathy was associated with marked down-regulation of podocyte-related genes and activation of Vav1-Rac1-induced actin cytoskeleton rearrangement in the podocytes.


Sign in / Sign up

Export Citation Format

Share Document