scholarly journals Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae.

1992 ◽  
Vol 118 (3) ◽  
pp. 531-540 ◽  
Author(s):  
M Seeger ◽  
G S Payne

The role of clathrin in retention of Golgi membrane proteins has been investigated. Prior work showed that a precursor form of the peptide mating pheromone alpha-factor is secreted by Saccharomyces cerevisiae cells which lack the clathrin heavy chain gene (CHC1). This defect can be accounted for by the observation that the Golgi membrane protein Kex2p, which initiates maturation of alpha-factor precursor, is mislocalized to the cell surface of mutant cells. We have examined the localization of two additional Golgi membrane proteins, dipeptidyl aminopeptidase A (DPAP A) and guanosine diphosphatase (GDPase) in clathrin-deficient yeast strains. Our findings indicate that DPAP A is aberrantly transported to the cell surface but GDPase is not. In mutant cells carrying a temperature-sensitive allele of CHC1 (chc1-ts), alpha-factor precursor appears in the culture medium within 15 min, and Kex2p and DPAP A reach the cell surface within 30 min, after imposing the nonpermissive temperature. In contrast to these immediate effects, a growth defect is apparent only after 2 h at the nonpermissive temperature. Also, sorting of the vacuolar membrane protein, alkaline phosphatase, is not affected in chc1-ts cells until 2 h after the temperature shift. A temperature-sensitive mutation which blocks a late stage of the secretory pathway, sec1, prevents the appearance of mislocalized Kex2p at the cell surface of chc1-ts cells. We propose that clathrin plays a direct role in the retention of specific proteins in the yeast Golgi apparatus, thereby preventing their transport to the cell surface.

1998 ◽  
Vol 140 (3) ◽  
pp. 577-590 ◽  
Author(s):  
Wolfgang Voos ◽  
Tom H. Stevens

The dynamic vesicle transport processes at the late-Golgi compartment of Saccharomyces cerevisiae (TGN) require dedicated mechanisms for correct localization of resident membrane proteins. In this study, we report the identification of a new gene, GRD19, involved in the localization of the model late-Golgi membrane protein A-ALP (consisting of the cytosolic domain of dipeptidyl aminopeptidase A [DPAP A] fused to the transmembrane and lumenal domains of the alkaline phosphatase [ALP]), which localizes to the yeast TGN. A grd19 null mutation causes rapid mislocalization of the late-Golgi membrane proteins A-ALP and Kex2p to the vacuole. In contrast to previously identified genes involved in late-Golgi membrane protein localization, grd19 mutations cause only minor effects on vacuolar protein sorting. The recycling of the carboxypeptidase Y sorting receptor, Vps10p, between the TGN and the prevacuolar compartment is largely unaffected in grd19Δ cells. Kinetic assays of A-ALP trafficking indicate that GRD19 is involved in the process of retrieval of A-ALP from the prevacuolar compartment. GRD19 encodes a small hydrophilic protein with a predominantly cytosolic distribution. In a yeast mutant that accumulates an exaggerated form of the prevacuolar compartment (vps27), Grd19p was observed to localize to this compartment. Using an in vitro binding assay, Grd19p was found to interact physically with the cytosolic domain of DPAP A. We conclude that Grd19p is a component of the retrieval machinery that functions by direct interaction with the cytosolic tails of certain TGN membrane proteins during the sorting/budding process at the prevacuolar compartment.


1997 ◽  
Vol 17 (11) ◽  
pp. 6236-6245 ◽  
Author(s):  
D D Jenness ◽  
Y Li ◽  
C Tipper ◽  
P Spatrick

This report compares trafficking routes of a plasma membrane protein that was misfolded either during its synthesis or after it had reached the cell surface. A temperature-sensitive mutant form of the yeast alpha-factor pheromone receptor (ste2-3) was found to provide a model substrate for quality control of plasma membrane proteins. We show for the first time that a misfolded membrane protein is recognized at the cell surface and rapidly removed. When the ste2-3 mutant cells were cultured continuously at 34 degrees C, the mutant receptor protein (Ste2-3p) failed to accumulate at the plasma membrane and was degraded with a half-life of 4 min, compared with a half-life of 33 min for wild-type receptor protein (Ste2p). Degradation of both Ste2-3p and Ste2p required the vacuolar proteolytic activities controlled by the PEP4 gene. At 34 degrees C, Ste2-3p comigrated with glycosylated Ste2p on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that Ste2-3p enters the secretory pathway. Degradation of Ste2-3p did not require delivery to the plasma membrane as the sec1 mutation failed to block rapid turnover. Truncation of the C-terminal cytoplasmic domain of the mutant receptors did not permit accumulation at the plasma membrane; thus, the endocytic signals contained in this domain are unnecessary for intracellular retention. In the pep4 mutant, Ste2-3p accumulated as series of high-molecular-weight species, suggesting a potential role for ubiquitin in the elimination process. When ste2-3 mutant cells were cultured continuously at 22 degrees C, Ste2-3p accumulated in the plasma membrane. When the 22 degrees C culture was shifted to 34 degrees C, Ste2-3p was removed from the plasma membrane and degraded by a PEP4-dependent mechanism with a 24-min half-life; the wild-type Ste2p displayed a 72-min half-life. Thus, structural defects in Ste2-3p synthesized at 34 degrees C are recognized in transit to the plasma membrane, leading to rapid degradation, and Ste2-3p that is preassembled at the plasma membrane is also removed and degraded following a shift to 34 degrees C.


1995 ◽  
Vol 129 (1) ◽  
pp. 35-46 ◽  
Author(s):  
S F Nothwehr ◽  
E Conibear ◽  
T H Stevens

The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4-ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.


1991 ◽  
Vol 11 (10) ◽  
pp. 5251-5258
Author(s):  
B Zanolari ◽  
H Riezman

The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.


1997 ◽  
Vol 110 (9) ◽  
pp. 1063-1072 ◽  
Author(s):  
S.F. Nothwehr ◽  
A.E. Hindes

Genetic analysis of late Golgi membrane protein localization in Saccharomyces cerevisiae has uncovered a large number of genes (called GRD) that are required for retention of A-ALP, a model late Golgi membrane protein. Here we describe one of the GRD genes, VPSS/GRD2, that encodes a hydrophilic protein similar to human sorting nexin-1, a protein involved in trafficking of the epidermal growth factor receptor. In yeast cells containing a vps5 null mutation the late Golgi membrane proteins A-ALP and Kex2p were rapidly mislocalized to the vacuolar membrane. A-ALP was delivered to the vacuole in vps5 mutants in a manner independent of a block in the early endocytic pathway. vps5 null mutants also exhibited defects in both vacuolar morphology and in sorting of a soluble vacuolar protein, carboxypeptidase Y. The latter defect is apparently due to an inability to localize the carboxypeptidase Y sorting receptor, Vps10p, to the Golgi since it is rapidly degraded in the vacuole in vps5 mutants. Fractionation studies indicate that Vps5p is distributed between a free cytosolic pool and a particulate fraction containing Golgi, transport vesicles, and possibly endosomes, but lacking vacuolar membranes. Immunofluorescence microscopy experiments show that the membrane-associated pool of Vps5p localizes to an endosome-like organelle that accumulates in the class E vps27 mutant. These results support a model in which Vps5p is required for retrieval of membrane proteins from a prevacuolar/late endosomal compartment back to the late Golgi apparatus.


2016 ◽  
Vol 44 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Chris MacDonald ◽  
Robert C. Piper

Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeast Saccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway.


1988 ◽  
Vol 8 (11) ◽  
pp. 4936-4948 ◽  
Author(s):  
J S Robinson ◽  
D J Klionsky ◽  
L M Banta ◽  
S D Emr

Using a selection for spontaneous mutants that mislocalize a vacuolar carboxypeptidase Y (CPY)-invertase fusion protein to the cell surface, we identified vacuolar protein targeting (vpt) mutants in 25 new vpt complementation groups. Additional alleles in each of the eight previously identified vpt complementation groups (vpt1 through vpt8) were also obtained. Representative alleles from each of the 33 vpt complementation groups (vpt1 through vpt33) were shown to exhibit defects in the sorting and processing of several native vacuolar proteins, including the soluble hydrolases CPY, proteinase A, and proteinase B. Of the 33 complementation groups, 19 were found to contain mutant alleles that led to extreme defects. In these mutants, CPY accumulated in its Golgi complex-modified precursor form which was secreted by the mutant cells. Normal protein secretion appeared to be unaffected in the vpt mutants. The lack of significant leakage of cytosolic markers from the vpt mutant cells indicated that the vacuolar protein-sorting defects associated with these mutants do not result from cell lysis. In addition, the observation that the precursor rather than the mature forms of CPY, proteinase A, proteinase B were secreted from the vpt mutants was consistent with the fact that mislocalization occurred at a stage after Golgi complex-specific modification, but before final vacuolar sorting of these enzymes. Vacuolar membrane protein sorting appeared to be unaffected in the majority of the vpt mutants. However, a subset of the vpt mutants (vpt11, vpt16, vpt18, and vpt33) was found to exhibit defects in the sorting of a vacuolar membrane marker enzyme, alpha-mannosidase. Up to 50% of the alpha-mannosidase enzyme activity was found to be mislocalized to the cell surface in these vpt mutants. Seven of the vpt complementation groups (vpt3, vpt11, vpt15, vpt16, vpt18, vpt29, and vpt33) contained alleles that led to a conditional lethal phenotype; the mutants were temperature sensitive for vegetative cell growth. This temperature-sensitive phenotype has been shown to be recessive and to cosegregate with the vacuolar protein-sorting defect in each case. Tetrad analysis showed that vpt3 mapped to the right arm of chromosome XV and that vpt15 mapped to the right arm of chromosome II. Intercrosses with other mutants that exhibited defects in vacuolar protein sorting or function (vpl, sec, pep, and end mutants) revealed several overlaps among these different sets of genes. Together, these data indicate that more than 50 gene products are involved, directly or indirectly, in the process of vacuolar protein sorting.


1996 ◽  
Vol 133 (1) ◽  
pp. 111-124 ◽  
Author(s):  
H A Sundberg ◽  
L Goetsch ◽  
B Byers ◽  
T N Davis

Previously we demonstrated that calmodulin binds to the carboxy terminus of Spc110p, an essential component of the Saccharomyces cerevisiae spindle pole body (SPB), and that this interaction is required for chromosome segregation. Immunoelectron microscopy presented here shows that calmodulin and thus the carboxy terminus of Spc110p localize to the central plaque. We created temperature-sensitive SPC110 mutations by combining PCR mutagenesis with a plasmid shuffle strategy. The temperature-sensitive allele spc110-220 differs from wild type at two sites. The cysteine 911 to arginine mutation resides in the calmodulin-binding site and alone confers a temperature-sensitive phenotype. Calmodulin overproduction suppresses the temperature sensitivity of spc110-220. Furthermore, calmodulin levels at the SPB decrease in the mutant cells at the restrictive temperature. Thus, calmodulin binding to Spc110-220p is defective at the nonpermissive temperature. Synchronized mutant cells incubated at the nonpermissive temperature arrest as large budded cells with a G2 content of DNA and suffer considerable lethality. Immunofluorescent staining demonstrates failure of nuclear DNA segregation and breakage of many spindles. Electron microscopy reveals an aberrant nuclear structure, the intranuclear microtubule organizer (IMO), that differs from a SPB but serves as a center of microtubule organization. The IMO appears during nascent SPB formation and disappears after SPB separation. The IMO contains both the 90-kD and the mutant 110-kD SPB components. Our results suggest that disruption of the calmodulin Spc110p interaction leads to the aberrant assembly of SPB components into the IMO, which in turn perturbs spindle formation.


2005 ◽  
Vol 25 (17) ◽  
pp. 7696-7710 ◽  
Author(s):  
Hironori Inadome ◽  
Yoichi Noda ◽  
Hiroyuki Adachi ◽  
Koji Yoda

ABSTRACT The Golgi apparatus consists of a set of vesicular compartments which are distinguished by their marker proteins. These compartments are physically separated in the Saccharomyces cerevisiae cell. To characterize them extensively, we immunoisolated vesicles carrying either of the SNAREs Sed5 or Tlg2, the markers of the early and late Golgi compartments, respectively, and analyzed the membrane proteins. The composition of proteins was mostly consistent with the position of each compartment in the traffic. We found six uncharacterized but evolutionarily conserved proteins and named them Svp26 (Sed5 compartment vesicle protein of 26 kDa), Tvp38, Tvp23, Tvp18, Tvp15 (Tlg2 compartment vesicle proteins of 38, 23, 18, and 15 kDa), and Gvp36 (Golgi vesicle protein of 36 kDa). The localization of Svp26 in the early Golgi compartment was confirmed by microscopic and biochemical means. Immunoprecipitation indicated that Svp26 binds to itself and a Golgi mannosyltransferase, Ktr3. In the absence of Svp26, a considerable portion of Ktr3 was mislocalized in the endoplasmic reticulum. Our data suggest that Svp26 has a novel role in retention of a subset of membrane proteins in the early Golgi compartments.


Sign in / Sign up

Export Citation Format

Share Document