The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi

1997 ◽  
Vol 110 (9) ◽  
pp. 1063-1072 ◽  
Author(s):  
S.F. Nothwehr ◽  
A.E. Hindes

Genetic analysis of late Golgi membrane protein localization in Saccharomyces cerevisiae has uncovered a large number of genes (called GRD) that are required for retention of A-ALP, a model late Golgi membrane protein. Here we describe one of the GRD genes, VPSS/GRD2, that encodes a hydrophilic protein similar to human sorting nexin-1, a protein involved in trafficking of the epidermal growth factor receptor. In yeast cells containing a vps5 null mutation the late Golgi membrane proteins A-ALP and Kex2p were rapidly mislocalized to the vacuolar membrane. A-ALP was delivered to the vacuole in vps5 mutants in a manner independent of a block in the early endocytic pathway. vps5 null mutants also exhibited defects in both vacuolar morphology and in sorting of a soluble vacuolar protein, carboxypeptidase Y. The latter defect is apparently due to an inability to localize the carboxypeptidase Y sorting receptor, Vps10p, to the Golgi since it is rapidly degraded in the vacuole in vps5 mutants. Fractionation studies indicate that Vps5p is distributed between a free cytosolic pool and a particulate fraction containing Golgi, transport vesicles, and possibly endosomes, but lacking vacuolar membranes. Immunofluorescence microscopy experiments show that the membrane-associated pool of Vps5p localizes to an endosome-like organelle that accumulates in the class E vps27 mutant. These results support a model in which Vps5p is required for retrieval of membrane proteins from a prevacuolar/late endosomal compartment back to the late Golgi apparatus.

1998 ◽  
Vol 140 (3) ◽  
pp. 577-590 ◽  
Author(s):  
Wolfgang Voos ◽  
Tom H. Stevens

The dynamic vesicle transport processes at the late-Golgi compartment of Saccharomyces cerevisiae (TGN) require dedicated mechanisms for correct localization of resident membrane proteins. In this study, we report the identification of a new gene, GRD19, involved in the localization of the model late-Golgi membrane protein A-ALP (consisting of the cytosolic domain of dipeptidyl aminopeptidase A [DPAP A] fused to the transmembrane and lumenal domains of the alkaline phosphatase [ALP]), which localizes to the yeast TGN. A grd19 null mutation causes rapid mislocalization of the late-Golgi membrane proteins A-ALP and Kex2p to the vacuole. In contrast to previously identified genes involved in late-Golgi membrane protein localization, grd19 mutations cause only minor effects on vacuolar protein sorting. The recycling of the carboxypeptidase Y sorting receptor, Vps10p, between the TGN and the prevacuolar compartment is largely unaffected in grd19Δ cells. Kinetic assays of A-ALP trafficking indicate that GRD19 is involved in the process of retrieval of A-ALP from the prevacuolar compartment. GRD19 encodes a small hydrophilic protein with a predominantly cytosolic distribution. In a yeast mutant that accumulates an exaggerated form of the prevacuolar compartment (vps27), Grd19p was observed to localize to this compartment. Using an in vitro binding assay, Grd19p was found to interact physically with the cytosolic domain of DPAP A. We conclude that Grd19p is a component of the retrieval machinery that functions by direct interaction with the cytosolic tails of certain TGN membrane proteins during the sorting/budding process at the prevacuolar compartment.


1997 ◽  
Vol 8 (8) ◽  
pp. 1529-1541 ◽  
Author(s):  
B F Horazdovsky ◽  
B A Davies ◽  
M N Seaman ◽  
S A McLaughlin ◽  
S Yoon ◽  
...  

A number of the Saccharomyces cerevisiae vacuolar protein-sorting (vps) mutants exhibit an altered vacuolar morphology. Unlike wild-type cells that contain 1-3 large vacuolar structures, the class B vps5 and vps17 mutant cells contain 10-20 smaller vacuole-like compartments. To explore the role of these VPS gene products in vacuole biogenesis, we cloned and sequenced VPS5 and characterized its protein products. The VPS5 gene is predicted to encode a very hydrophilic protein of 675 amino acids that shows significant sequence homology with mammalian sorting nexin-1. Polyclonal antiserum directed against the VPS5 gene product detects a single, cytoplasmic protein that is phosphorylated specifically on a serine residue(s). Subcellular fractionation studies indicate that Vps5p is associated peripherally with a dense membrane fraction distinct from Golgi, endosomal, and vacuolar membranes. This association was found to be dependent on the presence of another class B VPS gene product, Vps17p. Biochemical cross-linking studies demonstrated that Vps5p and Vps17p physically interact. Gene disruption experiments show that the VPS5 genes product is not essential for cell viability; however, cells carrying the null allele contain fragmented vacuoles and exhibit defects in vacuolar protein-sorting similar to vps17 null mutants. More than 95% of carboxypeptidase Y is secreted from these cells in its Golgi-modified p2 precursor form. Additionally, the Vps10p vacuolar protein-sorting receptor is mislocalized to the vacuole in vps5 mutant cells. On the basis of these and other observations, we propose that the Vps17p protein complex may participate in the intracellular trafficking of the Vps10p-sorting receptor, as well as other later-Golgi proteins.


1995 ◽  
Vol 108 (11) ◽  
pp. 3509-3521 ◽  
Author(s):  
B. Singer-Kruger ◽  
H. Stenmark ◽  
M. Zerial

Ypt51p, a small GTPase of Saccharomyces cerevisiae, has been previously identified as a structural homolog of mammalian Rab5. Although disruption analysis revealed that the protein is required for endocytic transport and for vacuolar protein sorting, the precise step controlled by Ypt51p was not determined. In this work we show that by heterologous expression in animal cells Ypt51p was targeted to Rab5-positive early endosomes and stimulated endocytosis. Furthermore, two Ypt51p mutants induced similar morphological alterations as the corresponding Rab5 mutants. Also in yeast cells Ypt51p was found to be required at an early step in endocytic membrane traffic, since alpha-factor accumulated in an early endocytic intermediate in the absence of Ypt51p. Cell fractionation analysis revealed cofractionation of Ypt51p with endocytic intermediates, while no association with the late Golgi compartment could be detected. Indirect immunofluorescence microscopy allowed us to morphologically identify the Ypt51p-containing compartment. Similar to the mammalian system larger Ypt51p-positive structures were revealed upon expression of Ypt51p Q66L. These structures were also positive for alpha-factor receptor and for carboxypeptidase Y, thus providing direct evidence for their endocytic nature and for the convergence of the vacuolar biosynthetic and endocytic pathways.


1995 ◽  
Vol 129 (1) ◽  
pp. 35-46 ◽  
Author(s):  
S F Nothwehr ◽  
E Conibear ◽  
T H Stevens

The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4-ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng-Wen He ◽  
Xue-Fei Cui ◽  
Shao-Jie Ma ◽  
Qin Xu ◽  
Yan-Peng Ran ◽  
...  

Abstract Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8.


2003 ◽  
Vol 2003 (4) ◽  
pp. 249-255 ◽  
Author(s):  
M. Walid Qoronfleh ◽  
Betsy Benton ◽  
Ray Ignacio ◽  
Barbara Kaboord

The human proteome project will demand faster, easier, and more reliable methods to isolate and purify protein targets. Membrane proteins are the most valuable group of proteins since they are the target for 70–80% of all drugs. Perbio Science has developed a protocol for the quick, easy, and reproducible isolation of integral membrane proteins from eukaryotic cells. This procedure utilizes a proprietary formulation to facilitate cell membrane disruption in a mild, nondenaturing environment and efficiently solubilizes membrane proteins. The technique utilizes a two-phase partitioning system that enables the class separation of hydrophobic and hydrophilic proteins. A variety of protein markers were used to investigate the partitioning efficiency of the membrane protein extraction reagents (Mem-PER) (Mem-PER is a registered trademark of Pierce Biotechnology, Inc) system. These included membrane proteins with one or more transmembrane spanning domains as well as peripheral and cytosolic proteins. Based on densitometry analyses of our Western blots, we obtained excellent solubilization of membrane proteins with less than 10% contamination of the hydrophobic fraction with hydrophilic proteins. Compared to other methodologies for membrane protein solubilization that use time-consuming protocols or expensive and cumbersome instrumentation, the Mem-PER reagents system for eukaryotic membrane protein extraction offers an easy, efficient, and reproducible method to isolate membrane proteins from mammalian and yeast cells.


2010 ◽  
Vol 21 (23) ◽  
pp. 4057-4060 ◽  
Author(s):  
Emily M. Coonrod ◽  
Tom H. Stevens

In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this “class E compartment” contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.


1990 ◽  
Vol 111 (3) ◽  
pp. 877-892 ◽  
Author(s):  
C K Raymond ◽  
P J O'Hara ◽  
G Eichinger ◽  
J H Rothman ◽  
T H Stevens

vps3 mutants of the yeast Saccharomyces cerevisiae are impaired in the sorting of newly synthesized soluble vacuolar proteins and in the acidification of the vacuole (Rothman, J. H., and T. H. Stevens. Cell. 47:1041-1051; Rothman, J. H., C. T. Yamashiro, C. K. Raymond, P. M. Kane, and T. H. Stevens. 1989. J. Cell Biol. 109:93-100). The VPS3 gene, which was cloned using a novel selection procedure, encodes a low abundance, hydrophilic protein of 117 kD that most likely resides in the cytoplasm. Yeast strains bearing a deletion of the VPS3 gene (vps3-delta 1) are viable, yet their growth rate is significantly reduced relative to wild-type cells. Temperature shift experiments with strains carrying a temperature conditional vps3 allele demonstrate that cells rapidly lose the capacity to sort the vacuolar protein carboxypeptidase Y upon loss of VPS3 function. Vacuolar morphology was examined in wild-type and vps3-delta 1 yeast strains by fluorescence microscopy. The vacuoles in wild-type yeast cells are morphologically complex, and they appear to be actively partitioned between mother cells and buds during an early phase of bud growth. Vacuolar morphology in vps3-delta 1 mutants is significantly altered from the wild-type pattern, and the vacuolar segregation process seen in wild-type strains is defective in these mutants. With the exception of a vacuolar acidification defect, the phenotypes of vps3-delta 1 strains are significantly different from those of mutants lacking the vacuolar proton-translocating ATPase. These data demonstrate that the acidification defect in vps3-delta 1 cells is not the primary cause of the pleiotropic defects in vacuolar function observed in these mutants.


2005 ◽  
Vol 16 (6) ◽  
pp. 2809-2821 ◽  
Author(s):  
Tamara Krsmanović ◽  
Agnes Pawelec ◽  
Tobias Sydor ◽  
Ralf Kölling

We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis (“kinetic polarization”). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Δvps4, Δvps27), which are affected in late endosome function and in the retromer mutant Δvps35. Instead, recycling was partially affected in the sorting nexin mutant Δsnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Δpep12, Δvps8, and Δvps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process.


1992 ◽  
Vol 118 (3) ◽  
pp. 531-540 ◽  
Author(s):  
M Seeger ◽  
G S Payne

The role of clathrin in retention of Golgi membrane proteins has been investigated. Prior work showed that a precursor form of the peptide mating pheromone alpha-factor is secreted by Saccharomyces cerevisiae cells which lack the clathrin heavy chain gene (CHC1). This defect can be accounted for by the observation that the Golgi membrane protein Kex2p, which initiates maturation of alpha-factor precursor, is mislocalized to the cell surface of mutant cells. We have examined the localization of two additional Golgi membrane proteins, dipeptidyl aminopeptidase A (DPAP A) and guanosine diphosphatase (GDPase) in clathrin-deficient yeast strains. Our findings indicate that DPAP A is aberrantly transported to the cell surface but GDPase is not. In mutant cells carrying a temperature-sensitive allele of CHC1 (chc1-ts), alpha-factor precursor appears in the culture medium within 15 min, and Kex2p and DPAP A reach the cell surface within 30 min, after imposing the nonpermissive temperature. In contrast to these immediate effects, a growth defect is apparent only after 2 h at the nonpermissive temperature. Also, sorting of the vacuolar membrane protein, alkaline phosphatase, is not affected in chc1-ts cells until 2 h after the temperature shift. A temperature-sensitive mutation which blocks a late stage of the secretory pathway, sec1, prevents the appearance of mislocalized Kex2p at the cell surface of chc1-ts cells. We propose that clathrin plays a direct role in the retention of specific proteins in the yeast Golgi apparatus, thereby preventing their transport to the cell surface.


Sign in / Sign up

Export Citation Format

Share Document