microfilament bundle
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol 869 ◽  
pp. 524-531
Author(s):  
Ismel V. Musov ◽  
Azamat L. Slonov ◽  
Azamat Zhansitov ◽  
Zhanna I. Kurdanova ◽  
Svetlana Yu. Khashirova

In laboratory conditions, the molding process was simulated by extrusion of a multifilament yarn with a diameter of the monofilament equal 250-350 μm from high performance plastics. The possibility of obtaining a microfilament bundle of polyetheretherketone, polyphenylene sulfide and polyetherimide using a specially made forming head is shown. The technological modes of extrusion have been worked out, which makes it possible to obtain thermoplastic fibers from the studied thermoplastics. It was revealed that the obtained microfilaments can be subjected to post-processing by cold drawing to reduce their diameter by 40-70 %.


2005 ◽  
Vol 170 (3) ◽  
pp. 443-453 ◽  
Author(s):  
Atsuko Yoneda ◽  
Hinke A.B. Multhaupt ◽  
John R. Couchman

The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite persistent ROCK II and guanine triphosphate–bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II–depleted cells but not those lacking ROCK I. These effects originated in part from distinct lipid-binding preferences of ROCK pleckstrin homology domains. ROCK II bound phosphatidylinositol 3,4,5P3 and was sensitive to its levels, properties not shared by ROCK I. Therefore, endogenous ROCKs are distinctly regulated and in turn are involved with different myosin compartments.


2002 ◽  
Vol 282 (1) ◽  
pp. C1-C26 ◽  
Author(s):  
Klaus Lange

Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from “metabolic regulation” to “transport limitation” occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca2+ signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.


1999 ◽  
Vol 112 (20) ◽  
pp. 3421-3431 ◽  
Author(s):  
R.L. Longley ◽  
A. Woods ◽  
A. Fleetwood ◽  
G.J. Cowling ◽  
J.T. Gallagher ◽  
...  

Syndecan-4 is a widely expressed transmembrane heparan sulfate proteoglycan which localizes to focal adhesions. Previous studies showed that the syndecan-4 cytoplasmic domain can associate with and potentiate the activity of protein kinase C, which is required for focal adhesion formation. To examine further the role of syndecan-4 in cell adhesion, we expressed syndecan-4 cDNA constructs in CHO-K1 cells. Syndecan-2 transfection was used to confirm effects seen were specific for syndecan-4. Cells overexpressing full length syndecan-4 core protein exhibited a more flattened, fibroblastic morphology, with increased focal adhesion formation and decreased cell motility. Expression of a syndecan-4 core protein with either a partial or complete deletion of the cytoplasmic domain or of an antisense construct led to markedly decreased spreading and focal adhesion formation, a more epithelioid morphology, and decreased motility. Overexpression of syndecan-2 changed the adhesive phenotype, but did not markedly alter focal adhesion and microfilament bundle formation. The data suggest that syndecan-4 is a regulator of focal adhesion and stress fiber formation, and influences both morphology and migration.


1995 ◽  
Vol 108 (2) ◽  
pp. 735-745 ◽  
Author(s):  
T.M. Svitkina ◽  
Y.A. Rovensky ◽  
A.D. Bershadsky ◽  
J.M. Vasiliev

Cylindrical culture substrata are known to induced longitudinal orientation of polarized fibroblasts and corresponding alignment of actin microfilament bundles in these cells. We studied microfilament bundle distribution in two cell types, fibroblasts and epitheliocytes, spread on two kinds of anisotropic substrata, quartz glass cylinders with a diameter 32 microns and narrow (25-40 microns wide) flat glass adhesive strips with non-adhesive borders. Rat embryo and human diploid fibroblasts, as expected, formed predominantly longitudinally aligned bundles on both substrata. In contrast, transverse bundles on cylinders and randomly oriented bundles on flat strips were formed in IAR-2 and MDCK epithelial cells. We interpret these data as showing that the epitheliocyte attempts to override the guiding influence of anisotropic substrata. The microfilament bundle pattern on cylinders depends on the integrity of the microtubules. Colcemid-induced microtubule depolymerization caused formation of longitudinal as well as transverse bundles both in fibroblasts and epitheliocytes, thus diminishing the differences in microfilament bundle patterns in two cell types. These results show that microtubules control the cell-type-specific distribution of microfilament bundles both in polarized fibroblasts and in discoid epitheliocytes. However, the results of this control are opposite: microtubules enhance cell polarization in fibroblasts, but prevent it in epithelial cells.


1988 ◽  
Vol 89 (1) ◽  
pp. 67-80
Author(s):  
S. Tamm ◽  
S.L. Tamm

Differentiation of macrociliary cells on regenerating lips of the ctenophore Beroe was studied by transmission electron microscopy. In this study of early development, we found that basal bodies for macrocilia arise by an acentriolar pathway near the nucleus and Golgi apparatus, in close association with plaques of dense fibrogranular bodies. Procentrioles are often aligned side-by-side in double layers with the cartwheel ends facing outward toward the surrounding plaques of dense granules. Newly formed basal bodies then disband from groups and develop a long striated rootlet at one end. At the same time, an array of microfilaments arises in the basal cytoplasm. The microfilaments are arranged in parallel strands oriented toward the cell surface. The basal body-rootlet units are transported to the apical surface in close association with the assembling actin filament bundle. Microfilaments run parallel to and alongside the striated rootlets, to which they often appear attached. Basal body-rootlet units migrate at the heads of trails of microfilaments, as if they are pushed upwards by elongation of their attached actin filaments. Near the apical surface the actin bundle curves and runs below the cell membrane. Newly arrived basal body-rootlets tilt upwards out of the microfilament bundle to contact the cell membrane and initiate ciliogenesis. The basal bodies tilt parallel to the flat sides of the rootlets, and away from the direction in which the basal feet point. The actin bundle continues to enlarge during ciliogenesis. These results suggest that basal body migration may be driven by the directed assembly of attached actin filaments.


Sign in / Sign up

Export Citation Format

Share Document