scholarly journals Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast.

1994 ◽  
Vol 125 (2) ◽  
pp. 299-312 ◽  
Author(s):  
R Y Hampton ◽  
J Rine

Numerous integral membrane proteins are degraded in the mammalian ER. HMG-CoA reductase (HMG-R), a key enzyme in the mevalonate pathway by which isoprenoids and sterols are synthesized, is one substrate of ER degradation. The degradation of HMG-R is modulated by feedback signals from the mevalonate pathway. We investigated the role of regulated degradation of the two isozymes of HMG-R, Hmg1p and Hmg2p, in the physiology of Saccharomyces cerevisiae. Hmg1p was quite stable, whereas Hmg2p was rapidly degraded. Degradation of Hmg2p proceeded independently of vacuolar proteases or secretory traffic, indicating that Hmg2p degradation occurred at the ER. Hmg2p stability was strongly affected by modulation of the mevalonate pathway through pharmacological or genetic means. Decreased mevalonate pathway flux resulted in decreased degradation of Hmg2p. One signal for degradation of Hmg2p was a nonsterol, mevalonate-derived molecule produced before the synthesis of squalene. Genetic evidence indicated that a farnesylated protein may also be necessary for Hmg2p degradation. Studies with reporter genes demonstrated that the stability of each isozyme was determined by its noncatalytic NH2-terminal domain. Our data show that ER protein degradation is widely conserved among eukaryotes, and that feedback control of HMG-R degradation is an ancient paradigm of regulation.

2000 ◽  
Vol 148 (5) ◽  
pp. 915-924 ◽  
Author(s):  
Stephen R. Cronin ◽  
Afif Khoury ◽  
Dana K. Ferry ◽  
Randolph Y. Hampton

The integral ER membrane protein HMG-CoA reductase (HMGR) is a key enzyme of the mevalonate pathway from which sterols and other essential molecules are produced. HMGR degradation occurs in the ER and is regulated by mevalonate-derived signals. Little is known about the mechanisms responsible for regulating HMGR degradation. The yeast Hmg2p isozyme of HMGR undergoes regulated degradation in a manner very similar to mammalian HMGR, allowing us to isolate mutants deficient in regulating Hmg2p stability. We call these mutants cod mutants for the control of HMG-CoA reductase degradation. With this screen, we have identified the first gene of this class, COD1, which encodes a P-type ATPase and is identical to SPF1. Our data suggested that Cod1p is a calcium transporter required for regulating Hmg2p degradation. This role for Cod1p is distinctly different from that of the well-characterized Ca2+ P-type ATPase Pmr1p which is neither required for Hmg2p degradation nor its control. The identification of Cod1p is especially intriguing in light of the role Ca2+ plays in the regulated degradation of mammalian HMGR.


1998 ◽  
Vol 9 (9) ◽  
pp. 2611-2626 ◽  
Author(s):  
Richard Gardner ◽  
Stephen Cronin ◽  
Benjamin Leader ◽  
Jasper Rine ◽  
Randolph Hampton

The degradation rate of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-R), a key enzyme of the mevalonate pathway, is regulated through a feedback mechanism by the mevalonate pathway. To discover the intrinsic determinants involved in the regulated degradation of the yeast HMG-R isozyme Hmg2p, we replaced small regions of the Hmg2p transmembrane domain with the corresponding regions from the other, stable yeast HMG-R isozyme Hmg1p. When the first 26 amino acids of Hmg2p were replaced with the same region from Hmg1p, Hmg2p was stabilized. The stability of this mutant was not due to mislocalization, but rather to an inability to be recognized for degradation. When amino acid residues 27–54 of Hmg2p were replaced with those from Hmg1p, the mutant was still degraded, but its degradation rate was poorly regulated. The degradation of this mutant was still dependent on the first 26 amino acid residues and on the function of the HRD genes. These mutants showed altered ubiquitination levels that were well correlated with their degradative phenotypes. Neither determinant was sufficient to impart regulated degradation to Hmg1p. These studies provide evidence that there are sequence determinants in Hmg2p necessary for degradation and optimal regulation, and that independent processes may be involved in Hmg2p degradation and its regulation.


2007 ◽  
Vol 55 (10) ◽  
pp. 1518-1521 ◽  
Author(s):  
Kiyoshi Ohyama ◽  
Masashi Suzuki ◽  
Kazuo Masuda ◽  
Shigeo Yoshida ◽  
Toshiya Muranaka

Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3354-3362 ◽  
Author(s):  
Niels W. C. J. van de Donk ◽  
Marloes M. J. Kamphuis ◽  
Berris van Kessel ◽  
Henk M. Lokhorst ◽  
Andries C. Bloem

AbstractHMG-CoA reductase is the rate-limiting enzyme of the mevalonate pathway leading to the formation of cholesterol and isoprenoids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). The inhibition of HMG-CoA reductase by lovastatin induced apoptosis in plasma cell lines and tumor cells from patients with multiple myeloma. Here we show that cotreatment with mevalonate or geranylgeranyl moieties, but not farnesyl groups, rescued myeloma cells from lovastatin-induced apoptosis. In addition, the inhibition of geranylgeranylation by specific inhibition of geranylgeranyl transferase I (GGTase I) induced the apoptosis of myeloma cells. Apoptosis triggered by the inhibition of geranylgeranylation was associated with reduction of Mcl-1 protein expression, collapse of the mitochondrial transmembrane potential, expression of the mitochondrial membrane protein 7A6, cytochrome c release from mitochondria into the cytosol, and stimulation of caspase-3 activity. These results imply that protein geranylgeranylation is critical for regulating myeloma tumor cell survival, possibly through regulating Mcl-1 expression. Our results show that pharmacologic agents such as lovastatin or GGTase inhibitors may be useful in the treatment of multiple myeloma.


2020 ◽  
pp. jbc.RA120.015910
Author(s):  
Margaret A Wangeline ◽  
Randolph Y Hampton

HMG-CoA reductase (HMGR) undergoes feedback-regulated degradation as part of sterol pathway control. Degradation of the yeast HMGR isozyme Hmg2 is controlled by the sterol pathway intermediate GGPP, which causes misfolding of Hmg2, leading to degradation by the HRD pathway; we call this process mallostery. We evaluated the role of the Hmg2 sterol sensing domain (SSD) in mallostery, as well as the involvement of the highly conserved INSIG proteins. We show that the Hmg2 SSD is critical for regulated degradation of Hmg2 and required for mallosteric misfolding of GGPP as studied by in vitro limited proteolysis. The Hmg2 SSD functions independently of conserved yeast INSIG proteins, but its function was modulated by INSIG, thus imposing a second layer of control on Hmg2 regulation. Mutant analyses indicated that SSD-mediated mallostery occurred prior to and independent of HRD-dependent ubiquitination. GGPP-dependent misfolding was still extant but occurred at a much slower rate in the absence of a functional SSD, indicating that the SSD facilitates a physiologically useful rate of GGPP response, and implying that the SSD is not a binding site for GGPP. Non-functional SSD mutants allowed us to test the importance of Hmg2 quaternary structure in mallostery:  a non-responsive Hmg2 SSD mutant strongly suppressed regulation of a co-expressed, normal Hmg2. Finally, we have found that GGPP-regulated misfolding occurred in detergent-solubilized Hmg2, a feature that will allow next-level analysis of the mechanism of this novel tactic of ligand-regulated misfolding.


2020 ◽  
Vol 71 (14) ◽  
pp. 4109-4124
Author(s):  
Moehninsi ◽  
Iris Lange ◽  
B Markus Lange ◽  
Duroy A Navarre

Abstract Isoprenoids constitute the largest class of plant natural products and have diverse biological functions including in plant growth and development. In potato (Solanum tuberosum), the regulatory mechanism underlying the biosynthesis of isoprenoids through the mevalonate pathway is unclear. We assessed the role of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) homologs in potato development and in the metabolic regulation of isoprenoid biosynthesis by generating transgenic lines with down-regulated expression (RNAi-hmgr) or overexpression (OE) of one (StHMGR1 or StHMGR3) or two genes, HMGR and farnesyl diphosphate synthase (FPS; StHMGR1/StFPS1 or StHMGR3/StFPS1). Levels of sterols, steroidal glycoalkaloids (SGAs), and plastidial isoprenoids were elevated in the OE-HMGR1, OE-HMGR1/FPS1, and OE-HMGR3/FPS1 lines, and these plants exhibited early flowering, increased stem height, increased biomass, and increased total tuber weight. However, OE-HMGR3 lines showed dwarfism and had the highest sterol amounts, but without an increase in SGA levels, supporting a rate-limiting role for HMGR3 in the accumulation of sterols. Potato RNAi-hmgr lines showed inhibited growth and reduced cytosolic isoprenoid levels. We also determined the relative importance of transcriptional control at regulatory points of isoprenoid precursor biosynthesis by assessing gene–metabolite correlations. These findings provide novel insights into specific end-products of the sterol pathway and could be important for crop yield and bioenergy crops.


Sign in / Sign up

Export Citation Format

Share Document