scholarly journals Progesterone-dependent expression of keratinocyte growth factor mRNA in stromal cells of the primate endometrium: keratinocyte growth factor as a progestomedin.

1994 ◽  
Vol 125 (2) ◽  
pp. 393-401 ◽  
Author(s):  
T Koji ◽  
M Chedid ◽  
J S Rubin ◽  
O D Slayden ◽  
K G Csaky ◽  
...  

In vitro studies have shown that keratinocyte growth factor (KGF, also known as FGF-7) is secreted by fibroblasts and is mitogenic specifically for epithelial cells. Therefore, KGF may be an important paracrine mediator of epithelial cell proliferation in vivo. Because stromal cells are thought to influence glandular proliferation in the primate endometrium, we investigated the hormonal regulation and cellular localization of KGF mRNA expression in the rhesus monkey uterus. Tissues were obtained both from naturally cycling monkeys in the follicular and luteal phases of the cycle, and from spayed monkeys that were either untreated or treated with estradiol (E2) alone, E2 followed by progesterone (P), E2 plus P, or E2 plus P plus an antiprogestin (RU 486). Northern blot analysis of total RNA with 32P-labeled probes revealed that the level of KGF mRNA in the endometrium was 70-100-fold greater in the luteal phase or after P treatment than in untreated, E2-treated, or follicular phase animals. Northern analysis also showed that KGF mRNA was present in the myometrium but was unaffected by hormonal state. RU 486 treatment prevented the P-induced elevation of endometrial KGF mRNA. P-dependent elevation of endometrial KGF expression was confirmed by measurement of KGF protein in tissue extracts using a two-site enzyme-linked immunosorbent assay. In situ hybridization with nonradioactive digoxigenin-labeled cDNA probes revealed that the KGF mRNA signal, which was present only in stromal and smooth muscle cells, was substantially increased by P primarily in the stromal cells located in the basalis region. Smooth muscle cells in the myometrium and the walls of the spiral arteries also expressed KGF mRNA, but the degree of this expression did not differ with hormonal state. P treatment led to increased proliferation in the glandular epithelium of the basalis region and to extensive growth of the spiral arteries. We conclude that the P-dependent increase in endometrial KGF resulted from a dual action of P: (a) a P-dependent induction of KGF expression in stromal cells, especially those in the basalis (zones III and IV), and (b) a P-dependent increase in the number of KGF-positive vascular smooth muscle cells caused by the proliferation of the spiral arteries. KGF is one of the first examples in primates of a P-induced, stromally derived growth factor that might function as a progestomedin.

2003 ◽  
Vol 53 (3) ◽  
pp. 127-132 ◽  
Author(s):  
Munehiko Onda ◽  
Zenya Naito ◽  
Ruojiao Wang ◽  
Takenori Fujii ◽  
Kiyoko Kawahara ◽  
...  

2000 ◽  
Vol 68 (6) ◽  
pp. 3635-3641 ◽  
Author(s):  
Jürgen Rödel ◽  
Marcus Woytas ◽  
Annemarie Groh ◽  
Karl-Hermann Schmidt ◽  
Matthias Hartmann ◽  
...  

ABSTRACT Chlamydia pneumoniae infection has been associated with asthma and atherosclerosis. Smooth muscle cells represent host cells for chlamydiae during chronic infection. In this study we demonstrated that C. pneumoniae infection of human smooth muscle cells in vitro increased production of interleukin 6 (IL-6) and basic fibroblast growth factor (bFGF) as shown by reverse transcription-PCR, immunoblotting, and enzyme-linked immunosorbent assay. In contrast, levels of platelet-derived growth factor A-chain mRNA were not affected after infection. The stimulation of bFGF and IL-6 production was most effective when viable chlamydiae were used as inoculum. Furthermore, inhibition of bacterial protein synthesis with chloramphenicol prevented up-regulation of IL-6 and bFGF in infected cells. Addition of IL-6 antibody to infected cultures diminished bFGF expression, indicating involvement of produced IL-6. These findings suggest that chlamydial infection of smooth muscle cells elicits a cytokine response that may contribute to structural remodeling of the airway wall in chronic asthma and to fibrous plaque formation in atherosclerosis.


Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 66-76 ◽  
Author(s):  
MC Galmiche ◽  
VE Koteliansky ◽  
J Briere ◽  
P Herve ◽  
P Charbord

In human long-term marrow cultures connective tissue-forming stromal cells are an essential cellular component of the adherent layer where granulomonocytic progenitors are generated from week 2 onward. We have previously found that most stromal cells in confluent cultures were stained by monoclonal antibodies directed against smooth muscle- specific actin isoforms. The present study was carried out to evaluate the time course of alpha-SM-positive stromal cells and to search for other cytoskeletal proteins specific for smooth muscle cells. It was found that the expression of alpha-SM in stromal cells was time dependent. Most of the adherent spindle-shaped, vimentin-positive stromal cells observed during the first 2 weeks of culture were alpha- SM negative. On the contrary, from week 3 to week 7, most interdigitated stromal cells contained stress fibers whose backbone was made of alpha-SM-positive microfilaments. In addition, in confluent cultures, other proteins specific for smooth muscle were detected: metavinculin, h-caldesmon, smooth muscle myosin heavy chains, and calponin. This study confirms the similarity between stromal cells and smooth muscle cells. Moreover, our results reveal that cells in vivo with the phenotype closest to that of stromal cells are immature fetal smooth muscle cells and subendothelial intimal smooth muscle cells; a cell subset with limited development following birth but extensively recruited in atherosclerotic lesions. Stromal cells very probably derive from mesenchymal cells that differentiate along this distinctive vascular smooth muscle cell pathway. In humans, this differentiation seems crucial for the maintenance of granulomonopoiesis. These in vitro studies were completed by examination of trephine bone marrow biopsies from adults without hematologic abnormalities. These studies revealed the presence of alpha-SM-positive cells at diverse locations: vascular smooth muscle cells in the media of arteries and arterioles, pericytes lining capillaries, myoid cells lining sinuses at the abluminal side of endothelial cells or found within the hematopoietic logettes, and endosteal cells lining bone trabeculae. More or less mature cells of the granulocytic series were in intimate contact with the thin cytoplasmic extensions of myoid cells. Myoid cells may be the in vivo counterpart of stromal cells with the above-described vascular smooth muscle phenotype.


Sign in / Sign up

Export Citation Format

Share Document