scholarly journals Cytoplasmic determinants involved in direct lysosomal sorting, endocytosis, and basolateral targeting of rat lgp120 (lamp-I) in MDCK cells.

1995 ◽  
Vol 128 (3) ◽  
pp. 321-332 ◽  
Author(s):  
S Höning ◽  
W Hunziker

Rat lysosomal glycoprotein 120 (lgp120; lamp-I) is a transmembrane protein that is directly delivered from the trans-Golgi network (TGN) to the endosomal/lysosomal system without prior appearance on the cell surface. Its short cytosolic domain of 11 residues encodes determinants for direct lysosomal sorting, endocytosis and, in polarized cells, basolateral targeting. We now characterize the structural requirements in the cytosolic domain required for sorting of lgp120 into the different pathways. Our results show that the cytoplasmic tail is sufficient to mediate direct transport from the trans-Golgi network (TGN) to lysosomes and that a G7-Y8-X-X-I11 motif is crucial for this sorting event. While G7 is only critical for direct lysosomal sorting in the TGN, Y8 and I11 are equally important for lysosomal sorting, endocytosis, and basolateral targeting. Thus, a small motif of five amino acids in the cytoplasmic tail of lgp120 can be recognized by the sorting machinery at several cellular locations and direct the protein into a variety of intracellular pathways.

2000 ◽  
Vol 352 (3) ◽  
pp. 827-833 ◽  
Author(s):  
Jan-Willem H. P. VAN DE LOO ◽  
Meike TEUCHERT ◽  
Ilse PAULI ◽  
Evelyn PLETS ◽  
Wim J. M.VAN DE VEN ◽  
...  

Proprotein convertases are responsible for the endoproteolytic activation of proproteins in the secretory pathway. The most recently discovered member of this family, lymphoma proprotein convertase (LPC), is a type-I transmembrane protein. Previously, we have demonstrated that its cytoplasmic tail is palmitoylated. In this study, we have identified the two most proximal cysteine residues in the cytoplasmic tail as palmitoylation sites. Substitution of either cysteine residue by alanine interfered with palmitoylation of the other. Palmitoylation of LPC was found to be sensitive to the protein palmitoyltransferase inhibitor tunicamycin but not cerulenin. It was also insensitive to the drugs brefeldin A, monensin and cycloheximide, indicating that the modification occurs in a late exocytic or endocytic compartment. Turnover of palmitoylated LPC is significantly faster (t1/2 ≈ 50min) than that of the LPC polypeptide backbone (t1/2 ≈ 3h), suggesting that palmitoylation is reversible. Abrogation of palmitoylation reduced the half-life of the LPC protein, but did not affect steady-state localization of LPC in the trans-Golgi network. Finally, LPC could not be detected in detergent-resistant membrane rafts. Taken together, these results suggest that dynamic palmitoylation of LPC is important for stability, but does not function as a dominant trafficking signal.


2001 ◽  
Vol 12 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
Jack Rohrer ◽  
Rosalind Kornfeld

A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a coveringN-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.


2006 ◽  
Vol 17 (12) ◽  
pp. 5153-5162 ◽  
Author(s):  
Beat E. Schaub ◽  
Bea Berger ◽  
Eric G. Berger ◽  
Jack Rohrer

The Golgi apparatus (GA) is the organelle where complex glycan formation takes place. In addition, it is a major sorting site for proteins destined for various subcellular compartments or for secretion. Here we investigate β1,4-galactosyltransferase 1 (galT) and α2,6-sialyltransferase 1 (siaT), two trans-Golgi glycosyltransferases, with respect to their different pathways in monensin-treated cells. Upon addition of monensin galT dissociates from siaT and the GA and accumulates in swollen vesicles derived from the trans-Golgi network (TGN), as shown by colocalization with TGN46, a specific TGN marker. We analyzed various chimeric constructs of galT and siaT by confocal fluorescence microscopy and time-lapse videomicroscopy as well as Optiprep density gradient fractionation. We show that the first 13 amino acids of the cytoplasmic tail of galT are necessary for its localization to swollen vesicles induced by monensin. We also show that the monensin sensitivity resulting from the cytoplasmic tail can be conferred to siaT, which leads to the rapid accumulation of the galT–siaT chimera in swollen vesicles upon monensin treatment. On the basis of these data, we suggest that cycling between the trans-Golgi cisterna and the trans-Golgi network of galT is signal mediated.


1992 ◽  
Vol 118 (1) ◽  
pp. 51-62 ◽  
Author(s):  
S H Low ◽  
B L Tang ◽  
S H Wong ◽  
W Hong

Dipeptidyl peptidase IV (DPPIV) is mainly vectorially targeted to the apical surface in MDCK cells. BFA was found to abolish the apical targeting of DPPIV. This BFA effect could be achieved under conditions where the ER to Golgi transport and the total surface expression of DPPIV were essentially unaffected. BFA executed its effect during the transport from the trans-Golgi network (TGN) to the surface. The inhibition of apical targeting resulted in enhanced mis-targeting to the basolateral surface. The mistargeted DPPIV was transcytosed back to the apical domain only after BFA withdrawal. In contrast, the basolateral targeting of uvomorulin was unaffected by BFA. These results established that the apical targeting of DPPIV was selectively abolished by BFA.


1997 ◽  
Vol 110 (5) ◽  
pp. 597-609 ◽  
Author(s):  
A. Simonsen ◽  
E. Stang ◽  
B. Bremnes ◽  
M. Roe ◽  
K. Prydz ◽  
...  

Epithelial cells have been found to express MHC class II molecules in vivo and are able to perform class II-restricted antigen presentation. The precise intracellular localization of these molecules in epithelial cells has been a matter of debate. We have analyzed the polarized targeting of human MHC class II molecules and the associated invariant chain (Ii) in stably transfected MDCK cells. The class II molecules are located at the basolateral surface and in intracellular vesicles, both when expressed alone or together with Ii. Ii is located in basolateral endosomes and can internalize through the basolateral plasma membrane domain. We show that the cytoplasmic tail of Ii contains information for basolateral targeting as it is sufficient to redirect the apical protein neuraminidase (NA) to the basolateral surface. We find that the two leucine-based motifs (LI and ML) in the cytoplasmic tail of Ii are individually sufficient for endosomal sorting and basolateral targeting of Ii in MDCK cells. In addition, basolateral sorting information is located within the 10 membrane-proximal residues of the Ii cytoplasmic tail. As several different signals mediate basolateral sorting of the class II/Ii complex, a polarized distribution of these molecules may be an essential feature of antigen presentation in epithelial cells.


1994 ◽  
Vol 107 (4) ◽  
pp. 933-943 ◽  
Author(s):  
M. Wagner ◽  
A.K. Rajasekaran ◽  
D.K. Hanzel ◽  
S. Mayor ◽  
E. Rodriguez-Boulan

The trans-Golgi network (TGN) of MDCK cells is exquisitely sensitive to the fungal metabolite brefeldin A (BFA), in contrast to the refractory Golgi stack of these cells. At a concentration of 1 microgram/ml, BFA promoted extensive tubulation of the TGN while the medical Golgi marker alpha-mannosidase II was not affected. Tubules emerging minutes after addition of the drug contained both the apical marker influenza hemagglutinin (HA), previously accumulated at 20 degrees C, and the fusion protein interleukin receptor/TGN38 (TGG), a TGN marker that recycles basolaterally, indicating that, in contrast to TGN vesicles, TGN-derived tubules cannot sort apical and basolateral proteins. After 60 minutes treatment with BFA, HA and TGG tubules formed extensive networks widely spread throughout the cell, different from the focused centrosomal localization previously described in non-polarized cells. The TGG network partially codistributed with an early endosomal tubular network loaded with transferrin, suggesting that the TGG and endosomal networks had fused or that TGG had entered the endosomal network via surface recycling and endocytosis. The extensive structural alterations of the TGN were accompanied by functional disruptions, such as the extensive mis-sorting of influenza HA, and by the release of the TGN marker gamma-adaptin. Our results suggest the involvement of BFA-sensitive adaptor proteins in TGN-->surface transport.


1990 ◽  
Vol 111 (3) ◽  
pp. 987-1000 ◽  
Author(s):  
A Wandinger-Ness ◽  
M K Bennett ◽  
C Antony ◽  
K Simons

Immunoisolation techniques have led to the purification of apical and basolateral transport vesicles that mediate the delivery of proteins from the trans-Golgi network to the two plasma membrane domains of MDCK cells. We showed previously that these transport vesicles can be formed and released in the presence of ATP from mechanically perforated cells (Bennett, M. K., A. Wandinger-Ness, and K. Simons, 1988. EMBO (Euro. Mol. Biol. Organ.) J. 7:4075-4085). Using virally infected cells, we have monitored the purification of the trans-Golgi derived vesicles by following influenza hemagglutinin or vesicular stomatitis virus (VSV) G protein as apical and basolateral markers, respectively. Equilibrium density gradient centrifugation revealed that hemagglutinin containing vesicles had a slightly lower density than those containing VSV-G protein, indicating that the two fractions were distinct. Antibodies directed against the cytoplasmically exposed domains of the viral spike glycoproteins permitted the resolution of apical and basolateral vesicle fractions. The immunoisolated vesicles contained a subset of the proteins present in the starting fraction. Many of the proteins were sialylated as expected for proteins existing the trans-Golgi network. The two populations of vesicles contained a number of proteins in common, as well as components which were enriched up to 38-fold in one fraction relative to the other. Among the unique components, a number of transmembrane proteins could be identified using Triton X-114 phase partitioning. This work provides evidence that two distinct classes of vesicles are responsible for apical and basolateral protein delivery. Common protein components are suggested to be involved in vesicle budding and fusion steps, while unique components may be required for specific recognition events such as those involved in protein sorting and vesicle targeting.


2009 ◽  
Vol 297 (6) ◽  
pp. C1389-C1396 ◽  
Author(s):  
Naofumi Yui ◽  
Rie Okutsu ◽  
Eisei Sohara ◽  
Tatemitsu Rai ◽  
Akihito Ohta ◽  
...  

FAPP2 is an adaptor protein of phosphatidylinositol-4-phosphate and is involved in the transport of some apical cargos from the trans-Golgi network (TGN). To investigate whether the regulated apical transport of aquaporin-2 (AQP2) is involved in the FAPP2-dependent apical protein-sorting machinery, we measured apical sorting of AQP2 in Madin-Darby canine kidney (MDCK) cells with or without FAPP2 knockdown. We established MDCK cell lines that stably express rat AQP2 without any tag sequence. Then, FAPP2-deficient stable cell lines were established from the AQP2-expressing cell lines by a retrovirus-mediated RNA interference system. In the established cell lines, AQP2 was detected in both apical and basolateral membranes. Forskolin increased only the apical localization of AQP2, which was not affected by basolateral treatment with 0.5% tannic acid, indicating that the forskolin-induced apical transport of AQP2 did not include the transcytotic pathway from basolateral to apical membranes but is a direct transport from TGN to the apical membranes. Using these cell lines, we tested the effect of FAPP2 knockdown on the polarized AQP2 transport to plasma membranes and found that the forskolin-induced apical transport of AQP2 was completely abolished by FAPP2 knockdown. By contrast, the basolateral localization of AQP2 was not affected by FAPP2 knockdown. AQP2 phosphorylation by forskolin was also impaired in FAPP2 knockdown MDCK cells. These results suggest that FAPP2 is necessary to generate AQP2-bearing vesicles at trans-Golgi that will undergo phosphorylation by PKA in subapical regions.


1998 ◽  
Vol 9 (9) ◽  
pp. 2477-2490 ◽  
Author(s):  
Jennifer R. Henkel ◽  
Gerard Apodaca ◽  
Yoram Altschuler ◽  
Stephen Hardy ◽  
Ora A. Weisz

The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin–Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.


2000 ◽  
Vol 148 (3) ◽  
pp. 495-504 ◽  
Author(s):  
Jennifer R. Henkel ◽  
Gregory A. Gibson ◽  
Paul A. Poland ◽  
Mark A. Ellis ◽  
Rebecca P. Hughey ◽  
...  

The function of acidification in protein sorting along the biosynthetic pathway has been difficult to elucidate, in part because reagents used to alter organelle pH affect all acidified compartments and are poorly reversible. We have used a novel approach to examine the role of acidification in protein sorting in polarized Madin-Darby canine kidney (MDCK) cells. We expressed the influenza virus M2 protein, an acid-activated ion channel that equilibrates lumenal and cytosolic pH, in polarized MDCK cells and examined the consequences on the targeting and delivery of apical and basolateral proteins. M2 activity affects the pH of only a subset of acidified organelles, and its activity can be rapidly reversed using ion channel blockers (Henkel, J.R., G. Apodaca, Y. Altschuler, S. Hardy, and O.A. Weisz. 1998. Mol. Biol. Cell. 8:2477–2490; Henkel, J.R., J.L. Popovich, G.A. Gibson, S.C. Watkins, and O.A. Weisz. 1999. J. Biol. Chem. 274:9854–9860). M2 expression significantly decreased the kinetics of cell surface delivery of the apical membrane protein influenza hemagglutinin, but not of the basolaterally delivered polymeric immunoglobulin receptor. Similarly, the kinetics of apical secretion of a soluble form of γ-glutamyltranspeptidase were reduced with no effect on the basolaterally secreted fraction. Interestingly, M2 activity had no effect on the rate of secretion of a nonglycosylated protein (human growth hormone [hGH]) that was secreted equally from both surfaces. However, M2 slowed apical secretion of a glycosylated mutant of hGH that was secreted predominantly apically. Our results suggest a role for acidic trans-Golgi network pH in signal-mediated loading of apical cargo into forming vesicles.


Sign in / Sign up

Export Citation Format

Share Document