scholarly journals Pmp27 promotes peroxisomal proliferation.

1995 ◽  
Vol 129 (2) ◽  
pp. 345-355 ◽  
Author(s):  
P A Marshall ◽  
Y I Krimkevich ◽  
R H Lark ◽  
J M Dyer ◽  
M Veenhuis ◽  
...  

Peroxisomes perform many essential functions in eukaryotic cells. The weight of evidence indicates that these organelles divide by budding from preexisting peroxisomes. This process is not understood at the molecular level. Peroxisomal proliferation can be induced in Saccharomyces cerevisiae by oleate. This growth substrate is metabolized by peroxisomal enzymes. We have identified a protein, Pmp27, that promotes peroxisomal proliferation. This protein, previously termed Pmp24, was purified from peroxisomal membranes, and the corresponding gene, PMP27, was isolated and sequenced. Pmp27 shares sequence similarity with the Pmp30 family in Candida boidinii. Pmp27 is a hydrophobic peroxisomal membrane protein but it can be extracted by high pH, suggesting that it does not fully span the bilayer. Its expression is regulated by oleate. The function of Pmp27 was probed by observing the phenotype of strains in which the protein was eliminated by gene disruption or overproduced by expression from a multicopy plasmid. The strain containing the disruption (3B) was able to grow on all carbon sources tested, including oleate, although growth on oleate, glycerol, and acetate was slower than wild type. Strain 3B contained peroxisomes with all of the enzymes of beta-oxidation. However, in addition to the presence of a few modestly sized peroxisomes seen in a typical thin section of a cell growing on oleate-containing medium, cells of strain 3B also contained one or two very large peroxisomes. In contrast, cells in a strain in which Pmp27 was overexpressed contained an increased number of normal-sized peroxisomes. We suggest that Pmp27 promotes peroxisomal proliferation by participating in peroxisomal elongation or fission.

2019 ◽  
Vol 20 (22) ◽  
pp. 5737 ◽  
Author(s):  
Miriam González-Villanueva ◽  
Hemanshi Galaiya ◽  
Paul Staniland ◽  
Jessica Staniland ◽  
Ian Savill ◽  
...  

Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate–glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization.


1990 ◽  
Vol 36 (7) ◽  
pp. 484-489 ◽  
Author(s):  
G. C. Papavizas ◽  
D. P. Roberts ◽  
K. K. Kim

Aqueous suspensions of conidia of Gliocladium virens strains Gl-3 and Gl-21 were exposed to both ultraviolet radiation and ethyl methanesulfonate. Two mutants of Gl-3 and three of Gl-21 were selected for tolerance to benomyl at 10 μg∙mL−1, as indicated by growth and conidial germination on benomyl-amended potato dextrose agar. The mutants differed considerably from their respective wild-type strains in appearance, growth habit, sporulation, carbon-source utilization, and enzyme activity profiles. Of 10 carbon sources tested, cellobiose, xylose, and xylan were the best for growth, galactose and glucose were intermediate, and arabinose, ribose, and rhamnose were poor sources of carbon. The wild-type strains and the mutants did not utilize cellulose as the sole carbon source for growth. Two benomyl-tolerant mutants of Gl-3 produced less cellulase (β-1,4-glucosidase, carboxymethylcellulase, filter-paper cellulase) than Gl-3. In contrast, mutants of Gl-21 produced more cellulase than the wild-type strain. Only Gl-3 provided control of blight on snapbean caused by Sclerotium rolfsii. Wild-type strain Gl-21 and all mutants from both strains were ineffective biocontrol agents. Key words: Gliocladium, benomyl tolerance, Sclerotium, rhizosphere competence.


2015 ◽  
Vol 83 (5) ◽  
pp. 2175-2184 ◽  
Author(s):  
Gabriel Mitchell ◽  
Liang Ge ◽  
Qiongying Huang ◽  
Chen Chen ◽  
Sara Kianian ◽  
...  

Listeria monocytogenesis a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, including the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% ± 7%) at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% ± 6%). While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% ± 5%). Coexpression of LLO and PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of autophagy byL. monocytogenesprimarily involves PlcA and ActA and that either one of these factors must be present forL. monocytogenesgrowth in macrophages.


2000 ◽  
Vol 182 (24) ◽  
pp. 6964-6974 ◽  
Author(s):  
Erika Hild ◽  
Kathy Takayama ◽  
Rose-Marie Olsson ◽  
Staffan Kjelleberg

ABSTRACT We report the cloning, sequencing, and characterization of therpoE homolog in Vibrio angustum S14. TherpoE gene encodes a protein with a predicted molecular mass of 19.4 kDa and has been demonstrated to be present as a single-copy gene by Southern blot analysis. The deduced amino acid sequence of RpoE is most similar to that of the RpoE homolog of Sphingomonas aromaticivorans, ς24, displaying sequence similarity and identity of 63 and 43%, respectively. Northern blot analysis demonstrated the induction of rpoE 6, 12, and 40 min after a temperature shift to 40°C. An rpoE mutant was constructed by gene disruption. There was no difference in viability during logarithmic growth, stationary phase, or carbon starvation between the wild type and the rpoE mutant strain. In contrast, survival of the mutant was impaired following heat shock during exponential growth, as well as after oxidative stress at 24 h of carbon starvation. The mutant exhibited microcolony formation during optimal growth temperatures (22 to 30°C), and cell area measurements revealed an increase in cell volume of the mutant during growth at 30°C, compared to the wild-type strain. Moreover, outer membrane and periplasmic space protein analysis demonstrated many alterations in the protein profiles for the mutant during growth and carbon starvation, as well as following oxidative stress, in comparison with the wild-type strain. It is thereby concluded that RpoE has an extracytoplasmic function and mediates a range of specific responses in stressed as well as unstressed cells of V. angustum S14.


2000 ◽  
Vol 13 (10) ◽  
pp. 1145-1155 ◽  
Author(s):  
Patrice Gaurivaud ◽  
Jean-Luc Danet ◽  
Frédéric Laigret ◽  
Monique Garnier ◽  
Joseph M. Bové

Spiroplasma citri is a plant-pathogenic mollicute. Recently, the so-called nonphytopathogenic S. citri mutant GMT 553 was obtained by insertion of transposon Tn4001 into the first gene of the fructose operon. Additional fructose operon mutants were produced either by gene disruption or selection of spontaneous xylitol-resistant strains. The behavior of these spiroplasma mutants in the periwinkle plants has been studied. Plants infected via leafhoppers with the wild-type strain GII-3 began to show symptoms during the first week following the insect-transmission period, and the symptoms rapidly became severe. With the fructose operon mutants, symptoms appeared only during the fourth week and remained mild, except when reversion to a fructose+ phenotype occurred. In this case, the fructose+ revertants quickly overtook the fructose¯ mutants and the symptoms soon became severe. When mutant GMT 553 was complemented with the fructose operon genes that restore fructose utilization, severe pathogenicity, similar to that of the wild-type strain, was also restored. Finally, plants infected with the wild-type strain and grown at 23°C instead of 30°C showed late symptoms, but these rapidly became severe. These results are discussed in light of the role of fructose in plants. Fructose utilization by the spiroplasmas could impair sucrose loading into the sieve tubes by the companion cells and result in accumulation of carbohydrates in source leaves and depletion of carbon sources in sink tissues.


1994 ◽  
Vol 124 (6) ◽  
pp. 915-925 ◽  
Author(s):  
MT McCammon ◽  
JA McNew ◽  
PJ Willy ◽  
JM Goodman

Targeting sequences on peroxisomal membrane proteins have not yet been identified. We have attempted to find such a sequence within PMP47, a protein of the methylotrophic yeast, Candida boidinii. This protein of 423 amino acids shows sequence similarity with proteins in the family of mitochondrial carrier proteins. As such, it is predicted to have six membrane-spanning domains. Protease susceptibility experiments are consistent with a six-membrane-spanning model for PMP47, although the topology for the peroxisomal protein is inverted compared with the mitochondrial carrier proteins. PMP47 contains two potential peroxisomal targeting sequences (PTS1), an internal SKL (residues 320-322) and a carboxy terminal AKE (residues 421-423). Using a heterologous in vivo sorting system, we show that efficient sorting occurs in the absence of both sequences. Analysis of PMP47-dihydrofolate reductase (DHFR) fusion proteins revealed that amino acids 1-199 of PMP47, which contain the first three putative membrane spans, do not contain the necessary targeting information, whereas a fusion with amino acids 1-267, which contains five spans, is fully competent for sorting to peroxisomes. Similarly, a DHFR fusion construct containing residues 268-423 did not target to peroxisomes while residues 203-420 appeared to sort to that organelle, albeit at lower efficiency than the 1-267 construct. However, DHFR constructs containing only amino acids 185-267 or 203-267 of PMP47 were not found to be associated with peroxisomes. We conclude that amino acids 199-267 are necessary for peroxisomal targeting, although additional sequences may be required for efficient sorting to, or retention by, the organelles.


2020 ◽  
Vol 19 (8) ◽  
pp. 1263-1280
Author(s):  
Lok Man ◽  
Ashleigh L. Dale ◽  
William P. Klare ◽  
Joel A. Cain ◽  
Zeynep Sumer-Bayraktar ◽  
...  

Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (∼82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (Δcj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed Δcj0025c could use known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in Δcj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not Δcj0025c. Provision of an alternate sulfur source (2 mm thiosulfate) restored Δcj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.


1988 ◽  
Vol 13 (4) ◽  
pp. 323-326 ◽  
Author(s):  
M. Devchand ◽  
F. P. Buxton ◽  
D. I. Gwynne ◽  
R. W. Davies

2004 ◽  
Vol 36 (8) ◽  
pp. 519-528 ◽  
Author(s):  
Lei Qin ◽  
Heng-An Wang ◽  
Zhong-Qin Wu ◽  
Xiao-Feng Zhang ◽  
Mei-Lei Jin ◽  
...  

Abstract The hmr19 gene was cloned from Streptomyces hygroscopicus subsp. yingchengensis strain 10–22, a bacterium strain producing agricultural antibiotics. Sequence similarity comparison indicates that hmr19 gene may encode a predicted protein with 14 putative transmembrane α-helical spanners, belonging to the drug:H+ antiporter-2 family of the major facilitator superfamily. The expression of hmr19 in the mycelium of strain 10-22 was detected by Western blotting analysis. Gene replacement technology was employed to construct an hmr19 disruption mutant. The growth inhibition test against different antibiotics indicated that the mutant strain was 5–20 fold more susceptible to tetracycline, vancomycin and mitomycin C than the parental wild type strain. The mutant took up tetracycline much faster and accumulated more antibiotics than the wild type strain 10-22. While with the addition of an energy uncoupler, carbonyl cyanide m-chlorophenylhydrazone, the characteristics of the accumulation of [3H]tetracycline in these two strains were almost the same. It was thus concluded that hmr19 encoded a multidrug resistance efflux protein.


Sign in / Sign up

Export Citation Format

Share Document