scholarly journals Targeting of U2AF65 to Sites of Active Splicing in the Nucleus

1997 ◽  
Vol 137 (5) ◽  
pp. 975-987 ◽  
Author(s):  
Margarida Gama-Carvalho ◽  
Randy D. Krauss ◽  
Lijian Chiang ◽  
Juan Valcárcel ◽  
Michael R. Green ◽  
...  

U2AF65 is an essential splicing factor that promotes binding of U2 small nuclear (sn)RNP at the pre-mRNA branchpoint. Here we describe a novel monoclonal antibody that reacts specifically with U2AF65. Using this antibody, we show that U2AF65 is diffusely distributed in the nucleoplasm with additional concentration in nuclear speckles, which represent subnuclear compartments enriched in splicing snRNPs and other splicing factors. Furthermore, transient expression assays using epitope-tagged deletion mutants of U2AF65 indicate that targeting of the protein to nuclear speckles is not affected by removing either the RNA binding domain, the RS domain, or the region required for interaction with U2AF35. The association of U2AF65 with speckles persists during mitosis, when transcription and splicing are downregulated. Moreover, U2AF65 is localized to nuclear speckles in early G1 cells that were treated with transcription inhibitors during mitosis, suggesting that the localization of U2AF65 in speckles is independent of the presence of pre-mRNA in the nucleus, which is consistent with the idea that speckles represent storage sites for inactive splicing factors. After adenovirus infection, U2AF65 redistributes from the speckles and is prefferentially detected at sites of viral transcription. By combining adenoviral infection with transient expression of deletion mutants, we show a specific requirement of the RS domain for recruitment of U2AF65 to sites of active splicing in the nucleus. This suggests that interactions involving the RS region of U2AF65 may play an important role in targeting this protein to spliceosomes in vivo.

1998 ◽  
Vol 143 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Tom Misteli ◽  
Javier F. Cáceres ◽  
Jade Q. Clement ◽  
Adrian R. Krainer ◽  
Miles F. Wilkinson ◽  
...  

Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3′ processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523–527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo.


1983 ◽  
Vol 3 (7) ◽  
pp. 1295-1309
Author(s):  
R W Scott ◽  
S M Tilghman

The constitutive transcription of a mouse alpha-fetoprotein (AFP) minigene was examined during the transient expression of AFP-simian virus 40-pBR322 recombinant DNAs introduced into HeLa cells by Ca3(PO4)2 precipitation. We tested three constructs, each of which contains the AFP minigene and pBR322 DNAs inserted in the late region of simian virus 40 and found that the relative efficiency of AFP gene expression was dependent on the arrangement of the three DNA elements in the vector. The transcripts begin at the authentic AFP cap site and are properly spliced and polyadenylated. To define a sequence domain in the 5' flanking region of the AFP gene required for constitutive expression, sequential 5' deletion mutants of the AFP minigene were constructed and introduced into HeLa cells. All AFP deletion mutants which retained at least the TATA motif located 30 base pairs upstream from the cap site were capable of directing accurate and efficient AFP transcription. However, when the TATA sequence was deleted, no accurately initiated AFP transcripts were detected. These results are identical to those obtained from in vitro transcription of truncated AFP 5' deletion mutant templates assayed in HeLa cell extracts. The rate of AFP transcription in vivo was unaffected by deletion of DNA upstream of the AFP TATA box but was greatly affected by the distance between the simian virus 40 control region and the 5' end of the gene. The absence of any promoter activity upstream of the TATA box in this assay system is in contrast to what has been reported for several other eucaryotic structural genes in a variety of in vivo systems. A sequence comparison between the 5' flanking region of the AFP gene and these genes suggested that the AFP gene lacks those structural elements found to be important for constitutive transcription in vivo. Either the AFP gene lacks upstream promoter function in the 5' flanking DNA contained within the minigene, or the use of a viral vector in a heterologous system precludes its identification.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1958
Author(s):  
Ella Alkalay ◽  
Chen Gam Ze Letova Refael ◽  
Irit Shoval ◽  
Noa Kinor ◽  
Ronit Sarid ◽  
...  

RNA-binding proteins, particularly splicing factors, localize to sub-nuclear domains termed nuclear speckles. During certain viral infections, as the nucleus fills up with replicating virus compartments, host cell chromatin distribution changes, ending up condensed at the nuclear periphery. In this study we wished to determine the fate of nucleoplasmic RNA-binding proteins and nuclear speckles during the lytic cycle of the Kaposi’s sarcoma associated herpesvirus (KSHV). We found that nuclear speckles became fewer and dramatically larger, localizing at the nuclear periphery, adjacent to the marginalized chromatin. Enlarged nuclear speckles contained splicing factors, whereas other proteins were nucleoplasmically dispersed. Polyadenylated RNA, typically found in nuclear speckles under regular conditions, was also found in foci separated from nuclear speckles in infected cells. Poly(A) foci did not contain lncRNAs known to colocalize with nuclear speckles but contained the poly(A)-binding protein PABPN1. Examination of the localization of spliced viral RNAs revealed that some spliced transcripts could be detected within the nuclear speckles. Since splicing is required for the maturation of certain KSHV transcripts, we suggest that the infected cell does not dismantle nuclear speckles but rearranges their components at the nuclear periphery to possibly serve in splicing and transport of viral RNAs into the cytoplasm.


2019 ◽  
Author(s):  
Antara Chakravarty ◽  
Christian Beren ◽  
Rees Garmann ◽  
A.L.N. Rao

ABSTRACTViral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replicated three-molecule RNA progeny of Brome mosaic virus (BMV) are packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasi-symmetry. Type 1 (B1v) and type 2 (B2v) virions respectively package genomic RNA1 or RNA2, while type 3 (B3+4v) co-packages genomic RNA3 (B3) and its sub-genomic RNA4 (B4). In this study, the application of a robust Agrobacterium-mediated transient expression system allowed us to assemble each virion type separately in planta. Physical and biochemical approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types, so protease-based mapping experiments were used to analyze the conformational dynamics of the individual virions. The crystallographic structure of the BMV capsid shows four trypsin-cleavage sites (K65, R103, K111 and K165 on the A, B and C subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1v and B2v released only two peptides involving amino acids 2-8 and 16-22 from the N-proximal arginine-rich RNA binding motif. In contrast, B3+4v capsids are unstable to trypsin, releasing several peptides in addition to the four sites predicted to be exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids.IMPORTANCEThe majority of viruses contain RNA genomes protected by a shell of capsid proteins. Although crystallographic studies show that viral capsids are static structures, accumulating evidence suggests that in solution virions are highly dynamic assemblies. The three genomic RNAs (RNAs 1, 2 and 3) and a single subgenomic RNA (RNA4) of Brome mosaic virus (BMV), an RNA virus pathogenic to plants, are distributed among three physically homogeneous virions. This study examines the capsid dynamics by MALDI-TOF analyses following trypsin digestion of the three virions assembled separately in vivo using the Agrobacterium-mediated transient expression approach. The results provide compelling evidence that virions packaging genomic RNAs1 and 2 are more stable and dynamically distinct from those co-packaging RNA3 and 4, suggesting that RNA-dependent capsid dynamics play an important biological role in the viral life cycle.


1983 ◽  
Vol 3 (7) ◽  
pp. 1295-1309 ◽  
Author(s):  
R W Scott ◽  
S M Tilghman

The constitutive transcription of a mouse alpha-fetoprotein (AFP) minigene was examined during the transient expression of AFP-simian virus 40-pBR322 recombinant DNAs introduced into HeLa cells by Ca3(PO4)2 precipitation. We tested three constructs, each of which contains the AFP minigene and pBR322 DNAs inserted in the late region of simian virus 40 and found that the relative efficiency of AFP gene expression was dependent on the arrangement of the three DNA elements in the vector. The transcripts begin at the authentic AFP cap site and are properly spliced and polyadenylated. To define a sequence domain in the 5' flanking region of the AFP gene required for constitutive expression, sequential 5' deletion mutants of the AFP minigene were constructed and introduced into HeLa cells. All AFP deletion mutants which retained at least the TATA motif located 30 base pairs upstream from the cap site were capable of directing accurate and efficient AFP transcription. However, when the TATA sequence was deleted, no accurately initiated AFP transcripts were detected. These results are identical to those obtained from in vitro transcription of truncated AFP 5' deletion mutant templates assayed in HeLa cell extracts. The rate of AFP transcription in vivo was unaffected by deletion of DNA upstream of the AFP TATA box but was greatly affected by the distance between the simian virus 40 control region and the 5' end of the gene. The absence of any promoter activity upstream of the TATA box in this assay system is in contrast to what has been reported for several other eucaryotic structural genes in a variety of in vivo systems. A sequence comparison between the 5' flanking region of the AFP gene and these genes suggested that the AFP gene lacks those structural elements found to be important for constitutive transcription in vivo. Either the AFP gene lacks upstream promoter function in the 5' flanking DNA contained within the minigene, or the use of a viral vector in a heterologous system precludes its identification.


1998 ◽  
Vol 111 (11) ◽  
pp. 1495-1506 ◽  
Author(s):  
P. Loyer ◽  
J.H. Trembley ◽  
J.M. Lahti ◽  
V.J. Kidd

The PITSLRE protein kinases are members of the p34cdc2 superfamily, with >20 different isoforms expressed from two linked genes in humans. PITSLRE homologues have been identified in mouse, chicken, Drosophila, Xenopus, and possibly Plasmodium falciparum, suggesting that their function may be well conserved. A possible role for a caspase processed PITSLRE isoform has been suggested by studies of Fas- and TNF-induced cell death. However, the function of these kinases in proliferating cells is still unknown. Here we demonstrate that the 110 kDa PITSLRE isoforms (p110) are localized to both the nucleoplasm and nuclear speckles, and that these isoforms specifically interact in vitro and in vivo with the RNA-binding protein RNPS1. RNPS1 is also localized to nuclear speckles, and its over expression disrupts normal nuclear speckle organization by causing the aggregation of many nuclear speckles into approximately 6 ‘mega’ speckles. This type of nuclear speckle aggregation closely resembles what occurs when cells are treated with several transcriptional inhibitors. These data indicate that the PITSLRE p110 isoforms interact with RNPS1 in vivo, and that these proteins may in turn influence some aspect of transcriptional and/or splicing regulation.


1996 ◽  
Vol 7 (10) ◽  
pp. 1559-1572 ◽  
Author(s):  
T Misteli ◽  
D L Spector

HeLa cell nuclei were permeabilized and reconstituted with nuclear extract to identify soluble nuclear factors which play a role in the organization of pre-mRNA splicing factors in the mammalian cell nucleus. Permeabilized nuclei reconstituted with nuclear extract were active in transcription and DNA replication and nuclear speckles containing pre-mRNA splicing factors were maintained over several hours independent of soluble nuclear components. The characteristic rounding up of nuclear speckles in response to inhibition of RNA polymerase II seen in vivo was reproduced in permeabilized cells and was strictly dependent on a catalytic activity present in the nuclear extract. By inhibitor titration experiments and sensitivity to inhibitor 2, this activity was identified as a member of the serine/threonine protein phosphatase 1 family (PP1). Interference with PP1 activity affected the distribution of pre-mRNA splicing factors in transcriptionally active, permeabilized cells, and excess PP1 activity caused increased dephosphorylation of SR proteins in nuclear speckles. These data show that the dynamic reorganization of the mammalian cell nucleus can be studied in permeabilized cells and that PP1 is involved in the rounding up of speckles as well as the overall organization of pre-mRNA splicing factors in the mammalian cell nucleus.


2009 ◽  
Vol 84 (4) ◽  
pp. 2169-2175 ◽  
Author(s):  
Sonia Zúñiga ◽  
Jazmina L. G. Cruz ◽  
Isabel Sola ◽  
Pedro A. Mateos-Gómez ◽  
Lorena Palacio ◽  
...  

ABSTRACT Purified nucleocapsid protein (N protein) from transmissible gastroenteritis virus (TGEV) enhanced hammerhead ribozyme self-cleavage and favored nucleic acid annealing, properties that define RNA chaperones, as previously reported. Several TGEV N-protein deletion mutants were expressed in Escherichia coli and purified, and their RNA binding ability and RNA chaperone activity were evaluated. The smallest N-protein domain analyzed with RNA chaperone activity, facilitating DNA and RNA annealing, contained the central unstructured region (amino acids 117 to 268). Interestingly, N protein and its deletion mutants with RNA chaperone activity enhanced template switching in a retrovirus-derived heterologous system, reinforcing the concept that TGEV N protein is an RNA chaperone that could be involved in template switching. This result is in agreement with the observation that in vivo, N protein is not necessary for TGEV replication, but it is required for efficient transcription.


2001 ◽  
Vol 21 (13) ◽  
pp. 4219-4232 ◽  
Author(s):  
Daniel Zenklusen ◽  
Patrizia Vinciguerra ◽  
Yvan Strahm ◽  
Françoise Stutz

ABSTRACT Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessentialSaccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)+ RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP.


2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Antara Chakravarty ◽  
Vijay S. Reddy ◽  
A. L. N. Rao

ABSTRACT Viral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replication-derived four-molecule RNA progeny of Brome mosaic virus (BMV) is packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasisymmetry. Type 1 (B1V) and type 2 (B2V) virions package genomic RNA1 and RNA2, respectively, while type 3 (B3+4V) virions copackage genomic RNA3 (B3) and its subgenomic RNA4 (sgB4). In this study, the application of a robust Agrobacterium-mediated transient expression system allowed us to assemble each virion type separately in planta. Experimental approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types. Thermal denaturation analysis and protease-based peptide mass mapping experiments were used to analyze stability and the conformational dynamics of the individual virions, respectively. The crystallographic structure of the BMV capsid shows four trypsin cleavage sites (K65, R103, K111, and K165 on the CP subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1V and B2V released a single peptide encompassing amino acids 2 to 8 of the N-proximal arginine-rich RNA binding motif. In contrast, B3+4V capsids were unstable with trypsin, releasing several peptides in addition to the peptides encompassing four predicted sites exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids. IMPORTANCE The majority of viruses contain RNA genomes protected by a shell of capsid proteins. Although crystallographic studies show that viral capsids are static structures, accumulating evidence suggests that, in solution, virions are highly dynamic assemblies. The three genomic RNAs (RNA1, -2, and -3) and a single subgenomic RNA (RNA4) of Brome mosaic virus (BMV), an RNA virus pathogenic to plants, are distributed among three physically homogeneous virions. This study examines the thermal stability by differential scanning fluorimetry (DSF) and capsid dynamics by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analyses following trypsin digestion of the three virions assembled separately in vivo using the Agrobacterium-mediated transient expression approach. The results provide compelling evidence that virions packaging genomic RNA1 and -2 are distinct from those copackaging RNA3 and -4 in their stability and dynamics, suggesting that RNA-dependent capsid dynamics play an important biological role in the viral life cycle.


Sign in / Sign up

Export Citation Format

Share Document