scholarly journals Rho-Kinase Phosphorylates COOH-terminal Threonines of Ezrin/Radixin/Moesin (ERM) Proteins and Regulates Their Head-to-Tail Association

1998 ◽  
Vol 140 (3) ◽  
pp. 647-657 ◽  
Author(s):  
Takeshi Matsui ◽  
Masato Maeda ◽  
Yoshinori Doi ◽  
Shigenobu Yonemura ◽  
Mutsuki Amano ◽  
...  

The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho- associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and ∼30 and ∼100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase–dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase–dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.

2014 ◽  
Vol 205 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Cortney C. Winkle ◽  
Leslie M. McClain ◽  
Juli G. Valtschanoff ◽  
Charles S. Park ◽  
Christopher Maglione ◽  
...  

Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.


2013 ◽  
Vol 203 (4) ◽  
pp. 673-689 ◽  
Author(s):  
Ah-Lai Law ◽  
Anne Vehlow ◽  
Maria Kotini ◽  
Lauren Dodgson ◽  
Daniel Soong ◽  
...  

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


2020 ◽  
Vol 295 (10) ◽  
pp. 3134-3147 ◽  
Author(s):  
Anan Chen ◽  
Pam D. Arora ◽  
Christine C. Lai ◽  
John W. Copeland ◽  
Trevor F. Moraes ◽  
...  

The actin cytoskeleton is a dynamic array of filaments that undergoes rapid remodeling to drive many cellular processes. An essential feature of filament remodeling is the spatio-temporal regulation of actin filament nucleation. One family of actin filament nucleators, the Diaphanous-related formins, is activated by the binding of small G-proteins such as RhoA. However, RhoA only partially activates formins, suggesting that additional factors are required to fully activate the formin. Here we identify one such factor, IQ motif containing GTPase activating protein-1 (IQGAP1), which enhances RhoA-mediated activation of the Diaphanous-related formin (DIAPH1) and targets DIAPH1 to the plasma membrane. We find that the inhibitory intramolecular interaction within DIAPH1 is disrupted by the sequential binding of RhoA and IQGAP1. Binding of RhoA and IQGAP1 robustly stimulates DIAPH1-mediated actin filament nucleation in vitro. In contrast, the actin capping protein Flightless-I, in conjunction with RhoA, only weakly stimulates DIAPH1 activity. IQGAP1, but not Flightless-I, is required to recruit DIAPH1 to the plasma membrane where actin filaments are generated. These results indicate that IQGAP1 enhances RhoA-mediated activation of DIAPH1 in vivo. Collectively these data support a model where the combined action of RhoA and an enhancer ensures the spatio-temporal regulation of actin nucleation to stimulate robust and localized actin filament production in vivo.


1999 ◽  
Vol 10 (11) ◽  
pp. 3979-3990 ◽  
Author(s):  
Anastasiya D. Blagoveshchenskaya ◽  
Eric W. Hewitt ◽  
Daniel F. Cutler

One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.


2000 ◽  
Vol 150 (1) ◽  
pp. 193-204 ◽  
Author(s):  
Alexis Gautreau ◽  
Daniel Louvard ◽  
Monique Arpin

ERM (ezrin, radixin, moesin) proteins act as linkers between the plasma membrane and the actin cytoskeleton. An interaction between their NH2- and COOH-terminal domains occurs intramolecularly in closed monomers and intermolecularly in head-to-tail oligomers. In vitro, phosphorylation of a conserved threonine residue (T567 in ezrin) in the COOH-terminal domain of ERM proteins disrupts this interaction. Here, we have analyzed the role of this phosphorylation event in vivo, by deriving stable clones producing wild-type, T567A, and T567D ezrin from LLC-PK1 epithelial cells. We found that T567A ezrin was poorly associated with the cytoskeleton, but was able to form oligomers. In contrast, T567D ezrin was associated with the cytoskeleton, but its distribution was shifted from oligomers to monomers at the membrane. Moreover, production of T567D ezrin induced the formation of lamellipodia, membrane ruffles, and tufts of microvilli. Both T567A and T567D ezrin affected the development of multicellular epithelial structures. Collectively, these results suggest that phosphorylation of ERM proteins on this conserved threonine regulates the transition from membrane-bound oligomers to active monomers, which induce and are part of actin-rich membrane projections.


2013 ◽  
Author(s):  
Xuewei Chen ◽  
Shimin Zuo ◽  
Benjamin Schwessinger ◽  
Mawsheng Chern ◽  
Patrick Canlas ◽  
...  

The rice XA21 immune receptor kinase and the structurally related XA3 receptor, confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast-two-hybrid system in a kinase activity dependent manner. OsSERK2 undergoes bidirectional trans-phosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. Taken together, these results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function.


1977 ◽  
Author(s):  
H. Nagasawa ◽  
M. Steiner ◽  
M. Baldini

The effect of estrogens on platelet function has remained a subject of considerable controversy. Neither in vivo nor in vitro studies have yet established a basis for a possible mode of action of this hormone on platelets. Our studies were predicated on previous results obtained by one of us suggesting a direct interaction of estrogens with antithrombin III(AT III), Platelets were isolated by conventional method from freshly drawn blood of volunteers, washed twice with Ca2+-free Tyrode buffer and finally suspended in this medium at a concentration of 4.5 × 105 platelets/mm3. Aggregation was induced by addition of 0.01 units of purified bovine thrombin (390 NIH units/mg protein). Aggregation was immediate reaching a maximum within 1.5-2 min.AT III purified from human plasma (2 U/mg protein) inhibited thrombin-induced aggregation in a predictable, concentration-dependent manner. Addition of 0.06 U AT III produced almost complete inhibition. The inhibiting effect of AT III was found to be related to the platelet concentration. Increasing the latter diminished progressively the effect of AT III on thrombin-induced aggregation.Beta-estradiol also inhibited the AT III effect on thrombin-induced aggregation abolishing it at a concentration of 5 × 10-6M. The minimal concentration of β-estradiol which produced a recognizable effect in this system was 5 × 10-9M. These results indicate a direct effect of estrogen on AT III, modifying the protein in such a way that subsequent interaction with thrombin either becomes impossible or does not lead to the inactivation of the enzyme. In addition a possible neutralization of AT III by intact platelets is suggested from our data.These studies were supported by a contract from the AEC.


2013 ◽  
Vol 202 (3) ◽  
pp. 509-526 ◽  
Author(s):  
David Shen ◽  
Hua Yuan ◽  
Alex Hutagalung ◽  
Avani Verma ◽  
Daniel Kümmel ◽  
...  

A screen for mutations that affect the recruitment of the exocyst to secretory vesicles identified genes encoding clathrin and proteins that associate or colocalize with clathrin at sites of endocytosis. However, no significant colocalization of the exocyst with clathrin was seen, arguing against a direct role in exocyst recruitment. Rather, these components are needed to recycle the exocytic vesicle SNAREs Snc1p and Snc2p from the plasma membrane into new secretory vesicles where they act to recruit the exocyst. We observe a direct interaction between the exocyst subunit Sec6p and the latter half of the SNARE motif of Snc2p. An snc2 mutation that specifically disrupts this interaction led to exocyst mislocalization and a block in exocytosis in vivo without affecting liposome fusion in vitro. Overexpression of Sec4p partially suppressed the exocyst localization defects of mutations in clathrin and clathrin-associated components. We propose that the exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins. This could help to confer both specificity and directionality to vesicular traffic.


2002 ◽  
Vol 22 (6) ◽  
pp. 1626-1638 ◽  
Author(s):  
Michael D. Ruse ◽  
Martin L. Privalsky ◽  
Frances M. Sladek

ABSTRACT For most ligand-dependent nuclear receptors, the status of endogenous ligand modulates the relative affinities for corepressor and coactivator complexes. It is less clear what parameters modulate the switch between corepressor and coactivator for the orphan receptors. Our previous work demonstrated that hepatocyte nuclear factor 4α1 (HNF4α1, NR2A1) interacts with the p160 coactivator GRIP1 and the cointegrators CBP and p300 in the absence of exogenously added ligand and that removal of the F domain enhances these interactions. Here, we utilized transient-transfection analysis to demonstrate repression of HNF4α1 activity by the corepressor silencing mediator of retinoid and thyroid receptors (SMRT) in several cell lines and on several HNF4α-responsive promoter elements. Glutathione S-transferase pulldown assays confirmed a direct interaction between HNF4α1 and receptor interaction domain 2 of SMRT. Loss of the F domain resulted in marked reduction of the ability of SMRT to interact with HNF4α1 in vitro and repress HNF4α1 activity in vivo, although the isolated F domain itself failed to interact with SMRT. Surprisingly, loss of both the A/B and F domains restored full repression by SMRT, suggesting involvement of both domains in the SMRT interaction. Finally, we show that when coexpressed along with HNF4α1 and GRIP1, CBP, or p300, SMRT can titer out HNF4α1-mediated transactivation in a dose-dependent manner and that this competition derives from mutually exclusive binding. Collectively, these results suggest that HNF4α can functionally interact with both a coactivator and a corepressor without altering the status of any putative ligand and that the presence of the F domain may play a role in discriminating between the different coregulators.


2012 ◽  
Vol 23 (11) ◽  
pp. 2156-2169 ◽  
Author(s):  
Eloy Bejarano ◽  
Henrique Girao ◽  
Andrea Yuste ◽  
Bindi Patel ◽  
Carla Marques ◽  
...  

Different pathways contribute to the turnover of connexins, the main structural components of gap junctions (GJs). The cellular pool of connexins targeted to each pathway and the functional consequences of degradation through these degradative pathways are unknown. In this work, we focused on the contribution of macroautophagy to connexin degradation. Using pharmacological and genetic blockage of macroautophagy both in vitro and in vivo, we found that the cellular pool targeted by this autophagic system is primarily the one organized into GJs. Interruption of connexins' macroautophagy resulted in their retention at the plasma membrane in the form of functional GJs and subsequent increased GJ-mediated intercellular diffusion. Up-regulation of macroautophagy alone is not sufficient to induce connexin internalization and degradation. To better understand what factors determine the autophagic degradation of GJ connexins, we analyzed the changes undergone by the fraction of plasma membrane connexin 43 targeted for macroautophagy and the sequence of events that trigger this process. We found that Nedd4-mediated ubiquitinylation of the connexin molecule is required to recruit the adaptor protein Eps15 to the GJ and to initiate the autophagy-dependent internalization and degradation of connexin 43. This study reveals a novel regulatory role for macroautophagy in GJ function that is directly dependent on the ubiquitinylation of plasma membrane connexins.


Sign in / Sign up

Export Citation Format

Share Document