scholarly journals Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes

1992 ◽  
Vol 102 (3) ◽  
pp. 457-467 ◽  
Author(s):  
J.Z. Kubiak ◽  
M. Weber ◽  
G. Geraud ◽  
B. Maro

When metaphase II-arrested mouse oocytes (M II) are activated very soon after ovulation, they respond abortively by second polar body extrusion followed by another metaphase arrest (metaphase III, M III; Kubiak, 1989). The M II/M III transition resembles the natural transition between the first and second meiotic metaphases (M I/M II). We observed that a similar sequence of events takes place during these two transitions: after anaphase, a polar body is extruded, the microtubules of the midbody disappear rapidly and a new metaphase spindle forms. The MPM-2 monoclonal antibody (which reacts with phosphorylated proteins associated with the centrosome during M-phase) stains discrete foci of peri-centriolar material only in metaphase arrested oocytes; during both transitional periods, a diffuse staining is observed, suggesting that these centrosomal proteins are dephosphorylated, as in a normal interphase. However, the chromosomes always remain condensed and an interphase network of microtubules is never observed during the transitional periods. Incorporation of 32P into proteins increases specifically during the transitional periods. Pulse-chase experiments, after labeling of the oocytes in M phase with 32P, showed that a 62 kDa phosphoprotein band disappears at the time of polar body extrusion. Histone H1 kinase activity (which reflects the activity of the maturation promoting factor) drops during both transitional periods to the level characteristic of interphase and then increases when the new spindle forms. Both the M I/M II and M II/M III transitions require protein synthesis as demonstrated by the effect of puromycin. These results suggest that the two M-phase/M-phase transitions are probably driven by the same molecular mechanism.

Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1957-1964 ◽  
Author(s):  
P. Kalab ◽  
J.Z. Kubiak ◽  
M.H. Verlhac ◽  
W.H. Colledge ◽  
B. Maro

Mitogen-activated protein kinases (MAPK) become activated during the meiotic maturation of oocytes from many species; however, their molecular targets remain unknown. This led us to characterize the activation of the ribosomal subunit S6 kinase of Mr 82 X 10(3) - 92 X 10(3) (p90rsk; a major substrate of MAPK in somatic cells) in maturing mouse oocytes and during the first cell cycle of the mouse embryo. We assessed the phosphorylation state of p90rsk by examining the electrophoretic mobility shifts on immunoblots and measured the kinase activity of immunoprecipitated p90rsk on a S6-derived peptide. Germinal vesicle stage (GV) oocytes contained a doublet of Mr 82 × 10(3) and 84 × 10(3) with a low S6 peptide kinase activity (12% of the maximum level found in metaphase II oocytes). A band of Mr 86 × 10(3) was first observed 30 minutes after GV breakdown (GVBD) and became prominent within 2 to 3 hours. MAPK was not phosphorylated 1 hour after GVBD, when the p90rsk-specific S6 kinase activity reached 37 % of the M II level. 2 hours after GVBD, MAPK became phosphorylated and p90rsk kinase activity reached 86% of the maximum level. The p90rsk band of Mr 88 × 10(3), present in mature M II oocytes when S6 peptide kinase activity is maximum, appeared when MAPK phosphorylation was nearly complete (2.5 hours after GVBD). In activated eggs, the dephosphorylation of p90rsk to Mr 86 X 10(3) starts about 1 hour after the onset of pronuclei formation and continues very slowly until the beginning of mitosis, when the doublet of Mr 82 X 10(3) and 84 X 10(3) reappears. A role for a M-phase activated kinase (like p34cdc2) in p90rsk activation was suggested by the reappearance of the Mr 86 X 10(3) band during first mitosis and in 1-cell embryos arrested in M phase by nocodazole. The requirement of MAPK for the full activation of p90rsk during meiosis was demonstrated by the absence of the fully active Mr 88 X 10(3) band in maturing c-mos −/− oocytes, where MAPK is not activated. The inhibition of kinase activity in activated eggs by 6-DMAP after second polar body extrusion provided evidence that both MAPK- and p90rsk-specific phosphatases are activated at approximately the same time prior to pronuclei formation.


Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 1995-2003 ◽  
Author(s):  
G.L. Russo ◽  
K. Kyozuka ◽  
L. Antonazzo ◽  
E. Tosti ◽  
B. Dale

Using the fluorescent dye Calcium Green-dextran, we measured intracellular Ca2+ in oocytes of the ascidian Ciona intestinalis at fertilization and during progression through meiosis. The relative fluorescence intensity increased shortly after insemination in a single transient, the activation peak, and this was followed by several smaller oscillations that lasted for approximately 5 minutes (phase 1). The first polar body was extruded after the completion of the phase 1 transients, about 9 minutes after insemination, and then the intracellular calcium level remained at baseline for a period of 5 minutes (phase 2). At 14 minutes postinsemination a second series of oscillations was initiated that lasted 11 minutes (phase 3) and terminated at the time of second polar body extrusion. Phases 1 and 3 were inhibited by preloading oocytes with 5 mM heparin. Simultaneous measurements of membrane currents, in the whole-cell clamp configuration, showed that the 1–2 nA inward fertilization current correlated temporally with the activation peak, while a series of smaller oscillations of 0.1-0.3 nA amplitude were generated at the time of the phase 3 oscillations. Biochemical characterization of Maturation Promoting Factor (MPF) in ascidian oocytes led to the identification of a Cdc2-like kinase activity. Using p13suc1-sepharose as a reagent to precipitate the MPF complex, a 67 kDa (67 × 10(3) Mr) protein was identified as cyclin B. Histone H1 kinase activity was high at metaphase I and decreased within 5 minutes of insemination reaching a minimum level during phase 2, corresponding to telophase I. During phase 3, H1 kinase activity increased and then decayed again during telophase II. Oocytes preloaded with BAPTA and subsequently inseminated did not generate any calcium transients, nonetheless H1 kinase activity decreased 5 minutes after insemination, as in the controls, and remained low for at least 30 minutes. Injection of BAPTA during phase 2 suppressed the phase 3 calcium transients, and inhibited both the increase in H1 kinase activity normally encountered at metaphase II and second polar body extrusion.


1999 ◽  
Vol 146 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Stéphane Brunet ◽  
Angélica Santa Maria ◽  
Philippe Guillaud ◽  
Denis Dujardin ◽  
Jacek Z. Kubiak ◽  
...  

During meiosis, two successive divisions occur without any intermediate S phase to produce haploid gametes. The first meiotic division is unique in that homologous chromosomes are segregated while the cohesion between sister chromatids is maintained, resulting in a reductional division. Moreover, the duration of the first meiotic M phase is usually prolonged when compared with mitotic M phases lasting 8 h in mouse oocytes. We investigated the spindle assembly pathway and its role in the progression of the first meiotic M phase in mouse oocytes. During the first 4 h, a bipolar spindle forms and the chromosomes congress near the equatorial plane of the spindle without stable kinetochore– microtubule end interactions. This late prometaphase spindle is then maintained for 4 h with chromosomes oscillating in the central region of the spindle. The kinetochore–microtubule end interactions are set up at the end of the first meiotic M phase (8 h after entry into M phase). This event allows the final alignment of the chromosomes and exit from metaphase. The continuous presence of the prometaphase spindle is not required for progression of the first meiotic M phase. Finally, the ability of kinetochores to interact with microtubules is acquired at the end of the first meiotic M phase and determines the timing of polar body extrusion.


2015 ◽  
Vol 27 (1) ◽  
pp. 239
Author(s):  
M.-H. Zhao ◽  
T. Kim ◽  
N.-H. Kim ◽  
X.-S. Cui

Zinc is an extremely important trace element that plays important roles in several biological processes. In this study, we investigated the role of zinc during meiotic resumption and metaphase arrest in in vitro-matured porcine oocytes. Oocytes at either germinal vesicle (GV) or MII stage were treated with TPEN, a Zn2+ chelator. Meiotic resumption and activation were assayed. Effect of PMA, a PKC activator, on GV breakdown (GVBD) and oocytes activation after TPEN treatment were checked. Results showed that depletion of zinc with 3 µM TPEN-blocked oocytes at GV stage (60.85 ± 5.15 v. 15.60 ± 0.20%; P < 0.05) after 25 h of maturation. The 10-µM TPEN treatment at MII stage significantly (P < 0.05) increased pronucleus formation (90.61 ± 9.10 v. 5.56 ± 9.62%; P < 0.05) and the second polar body extrusion (93.64 ± 5.53 v. 8.59 ± 8.34%; P < 0.05). The p34cdc2 activity was decreased in both MII and GVBD oocytes that were treated with TPEN as compared to control. Phosphorylated MAPK measured by Western blot was also decreased in GVBD oocytes when zinc was depleted. This might be explained by the low expression of C-mos Cyclin B1 and Cdc2 at this stage. Treatment of the oocytes with PKC agonist PMA (100 nM) rescued the meiotic resumption arrest observed after TPEN treatment (GV stage: 26.91 ± 3.10 v. 83.89 ± 11.94%; P < 0.05). The level of phosphorylation of MAPK and p34cdc2 activity were rescued when PMA were used. Treatment oocytes with 100 nM PMA in the GV stage also increased the signal of zinc indicator, fluozin-3-a.m., by about 4-fold in cytoplasm (P < 0.05). These results showed that zinc regulates meiotic resumption probably through PKC. However, although the TPEN treatment reduced phosphorylation of PKC substrates in both meiotic resumption and the MII stage, rescue of PKC substrates phosphorylation with PMA did not prevent the activation of oocytes caused by zinc depletion. These data demonstrate that zinc regulates meiotic resumption via a PKC-dependent pathway, but independent of that in maintaining of metaphase arrest in porcine oocytes.This work was supported by the Bio-industry Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and by a grant from the Next-Generation BioGreen 21 Program (No. PJ009601 and PJ009098), Rural Development Administration, Republic of Korea.


2004 ◽  
Vol 16 (9) ◽  
pp. 11
Author(s):  
K. T. Jones

A series of calcium spikes are induced in the mammalian egg cytoplasm at fertilisation. These calcium spikes, which last for several hours, are the necessary and sufficient signal that stimulates the egg to escape from arrest at metaphase of the second meiotic division. Metaphase arrest is achieved by preventing the destruction of cyclin B1, the regulatory component of Maturation (M-Phase) Promoting Factor, and securin, which prevents segregation of sister chromatids. Both these proteins are destroyed by tagging with ubiquitin, using an E3 ligase the Anaphase-Promoting Complex (APC). Ubiquitination tags them for proteolysis by the 26S proteasome. Work from my lab has demonstrated that the sperm calcium signal works through activating the APC, not the 26S proteasome. Although we do not know which APC component is affected by calcium, this activation appears specific to a metaphase-arrested cell cycle state. More recently we have found that the APC is differently regulated at specific points during exit from meiosis II. Before extrusion of the second polar body it is the APC activator cdc20 that regulates APC activity. However, following extrusion of the second polar body cdh1 appears the major regulator. It is probable, therefore, that the calcium spiking affects the activity of both APCcdc20 and APCcdh1. This swap in APC activator at the time of second polar body extrusion has not been reported in eggs of other species, in fact non-mammalian eggs all lack cdh1. Since APCcdc20 and APCcdh1 have different substrate specificities, the function of APCcdh1 in mammalian eggs warrants further investigation.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ming-Hong Sun ◽  
Lin-Lin Hu ◽  
Chao-Ying Zhao ◽  
Xiang Lu ◽  
Yan-Ping Ren ◽  
...  

Abstract Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 285-294 ◽  
Author(s):  
Q. Y. Sun ◽  
Y. Lax ◽  
S. Rubinstein ◽  
D. Y. Chen ◽  
H. Breitbart

Abstract A very sensitive method was established for detecting the activity of mitogen-activated protein (MAP) kinase in mouse eggs, and used to follow temporal changes of this kinase during fertilization and sponatenous or chemically-induced parthenogenic activation. MAP kinase activity increased between 1 and 2.5 h post-insemination, at which time the second polar body was emitted and sperm chromatin was dispersed; its activity decreased sharply at 8 h, when pronuclei were formed. Both calcium ionophore A23187 and ethanol simulta­ neously induced pronuclear formation and MAP kinase inactivation in aged eggs 8 h after incubation but less effectively in fresh eggs. The protein kinase inhibitor staurosporine in­duced pronuclear formation and MAP kinase inactivation more quickly than other treat­ ments, with MAP kinase inactivation occurring slightly proceeding pronuclear formation. Okadaic acid, a specific inhibitor of protein phosphatase 1 and 2A , induced increase in MAP kinase activity, and overcame pronuclear formation induced by various stimuli. MAP kinase inactivation preceded pronuclear formation in eggs spontaneously activated by aging in vitro, perhaps due to cytoplasmic degeneration and thus delayed response of nuclear envelope precursors to MAP kinase inactivation. These data suggest that MAP kinase is a key protein kinase regulating the events of mouse egg activation. Increased MAP kinase activity is temporally correlated with the second polar body emission and sperm chromatin decondensation. Although different stimuli (including sperm) may initially act through different mechanisms, they finally inactivate MAP kinase, probably by allowing the action of protein phosphatase, and thus induces the transition to interphase.


1993 ◽  
Vol 104 (3) ◽  
pp. 861-872 ◽  
Author(s):  
M.S. Szollosi ◽  
J.Z. Kubiak ◽  
P. Debey ◽  
H. de Pennart ◽  
D. Szollosi ◽  
...  

Mouse oocyte activation is followed by a peculiar period during which the interphase network of microtubules does not form and the chromosomes remain condensed despite the inactivation of MPF. To evaluate the role of protein phosphorylation during this period, we studied the effects of the protein kinase inhibitor 6-dimethylaminopurine (6-DMAP) on fertilization and/or parthenogenetic activation of metaphase II-arrested mouse oocytes. 6-DMAP by itself does not induce the inactivation of histone H1 kinase in metaphase II-arrested oocytes, and does not influence the dynamics of histone H1 kinase inactivation during oocyte activation. However, 6-DMAP inhibits protein phosphorylation after oocyte activation. In addition, the phosphorylated form of some proteins disappear earlier in oocytes activated in the presence of 6-DMAP than in the activated control oocytes. This is correlated with the acceleration of some post-fertilization morphological events, such as sperm chromatin decondensation and its transient recondensation, formation of the interphase network of microtubules and pronuclear formation. In addition, numerous abnormalities could be observed: (1) the spindle rotation and polar body extrusion are inhibited; (2) the exchange of protamines into histones seems to be impaired, as judged by the morphology of DNA fibrils by electron microscopy; (3) the formation of a new nuclear envelope around the sperm chromatin proceeds prematurely, while recondensation is not yet completed. These observations suggest that the 6-DMAP-sensitive kinase(s) is (are) involved in the control of post-fertilization events such as the formation of the interphase network of microtubules, the remodelling of sperm chromatin and pronucleus formation.


2007 ◽  
Vol 12 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Manqi Deng ◽  
Praveen Suraneni ◽  
Richard M. Schultz ◽  
Rong Li

Sign in / Sign up

Export Citation Format

Share Document