scholarly journals Neuropilin-1 Mediates Collapsin-1/Semaphorin III Inhibition of Endothelial Cell Motility

1999 ◽  
Vol 146 (1) ◽  
pp. 233-242 ◽  
Author(s):  
Hua-Quan Miao ◽  
Shay Soker ◽  
Leonard Feiner ◽  
José Luis Alonso ◽  
Jonathan A. Raper ◽  
...  

Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65–75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.

Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2275-2283 ◽  
Author(s):  
Naoki Nakayama ◽  
Jae Lee ◽  
Laura Chiu

Abstract The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.


1997 ◽  
Vol 82 (7) ◽  
pp. 2135-2142
Author(s):  
Lane K. Christenson ◽  
Richard L. Stouffer

Granulosa cells in the ovulatory follicle express messenger ribonucleic acid encoding vascular endothelial growth factor (VEGF), an agent that may mediate the neovascularization of the developing corpus luteum, but it is not known whether luteinizing granulosa cells synthesize and secrete VEGF during the periovulatory interval. Studies were designed to evaluate the effects of an in vivo gonadotropin surge on VEGF production by macaque granulosa cells (study 1) and to test the hypothesis that gonadotropins act directly on granulosa cells to regulate VEGF production (study 2). Monkeys received a regimen of exogenous gonadotropins to promote the development of multiple preovulatory follicles. Nonluteinized granulosa cells (i.e. preovulatory; NLGC) and luteinized granulosa cells (i.e. periovulatory; LGC) were aspirated from follicles before and 27 h after an ovulatory gonadotropin bolus, respectively. Cells were either incubated for 24 h in medium with or without 100 ng/mL hCG (study 1) or cultured for 6 days in medium with or without 100 ng/mL hCG or 0.1, 1, 10, and 100 ng/mL of recombinant human LH (r-hLH) or r-hFSH (study 2). Culture medium was assayed for VEGF and progesterone. In study 1, LGC produced 8-fold greater levels of VEGF than NLGC (899 ± 471 vs. 111 ± 26 pg/mL, mean ± sem; P < 0.05). In vitro treatment with hCG increased (P < 0.05) VEGF production by NLGC to levels that were not different from the LGC incubated under control conditions. In vivo bolus doses of r-hCG (100 and 1000 IU) and r-hFSH (2500 IU) were equally effective in elevating granulosa cell VEGF production. In study 2, in vitro treatment with r-hFSH, r-hLH, and hCG markedly increased (P< 0.05) VEGF and progesterone production by the NLGC in a dose- and time-dependent manner. By comparison, the three gonadotropins (100 ng/mL dose) only modestly increased VEGF and progesterone production by LGC. These experiments demonstrate a novel role for the midcycle surge of gonadotropin (LH/CG or FSH) in primates to promote VEGF production by granulosa cells in the periovulatory follicle. Further, the data demonstrate that FSH-like as well as LH-like gonadotropins directly stimulate VEGF synthesis by granulosa cells.


2000 ◽  
Vol 11 (7) ◽  
pp. 1236-1243 ◽  
Author(s):  
STEPHEN THOMAS ◽  
JOHANN VANUYSTEL ◽  
GABRIELLA GRUDEN ◽  
VERÓNICA RODRÍGUEZ ◽  
DAVINA BURT ◽  
...  

Abstract. Mesangial cell proliferation and growth factor over-expression are characteristic features of several glomerular diseases. Vascular endothelial growth factor (VEGF), a potent mitogen, is expressed in podocytes in the glomerulus, and VEGF receptors (flt-1, KDR, and neuropilin-1) are present on endothelial cells and other cell types. This study examined whether human mesangial cells (HMC) express VEGF receptorsin vitroandex vivoand evaluated the effect of VEGF on HMC proliferation. All receptor types were detected in HMCin vitroby immunofluorescence and Western blotting. VEGF165induced a dose-responsive increase in3H-thymidine incorporation (25 ng/ml VEGF165: 2.3-fold increase ; 50 ng/ml : 3.8-fold ; 100 ng/ml : 4.8-fold ; 200 ng/ml : 3.4-fold ;P= 0.016) and in cell number (50 ng/ml VEGF165: 1.2-fold increase ; 100 ng/ml : 1.6-fold ; 200 ng/ml : 1.4-fold ;P= 0.005), effects prevented by an anti-VEGF165polyclonal neutralizing antibody (100 μg/ml). The proliferative effect was confirmed by a tetrazolium dye-based assay (100 ng/ml VEGF165: 1.4-fold increase). Inex vivoexperiments, VEGF receptors in biopsy material from normal and diseased kidneys were detected by immunohistochemistry. No mesangial flt-1 receptor staining was seen in normal renal cortical tissue samples, and only weak mesangial KDR staining was detected. In contrast, mesangial flt-1 and KDR receptor staining were both clearly seen in biopsy samples from proliferative renal diseases. In conclusion, flt-1, KDR, and neuropilin-1 are present on cultured HMC, and VEGF165induces HMC proliferation. In addition, the flt-1 and KDR receptors are expressed in the mesangium in mesangioproliferative disease.


2019 ◽  
Author(s):  
Jordi Lambert ◽  
Kate Makin ◽  
Sophia Akbareian ◽  
Robert Johnson ◽  
Stephen D Robinson ◽  
...  

AbstractThe extracellular proteoglycanase ADAMTS-1 has critical roles in organogenesis and angiogenesis. We demonstrate here the functional convergence of ADAMTS-1 and the transmembrane heparan sulfate proteoglycan syndecan-4 in influencing adhesion, migration, and angiogenesis in vitro. Knockdown of ADAMTS-1 in fibroblasts and endothelial cells resulted in a parallel reduction in cell surface syndecan-4 that was not due to altered syndecan-4 expression or internalization, but was attributable to increased expression and activity of matrix metalloproteinase-9 (MMP-9), a known syndecan-4 sheddase. Knockdown of either syndecan-4 or ADAMTS-1 led to enhanced endothelial cell responses to exogenous vascular endothelial growth factor (VEGF), and increased microvessel sprouting in ex vivo aortic ring assays, correlating with reduced ability of the cells to sequester VEGF. On fibronectin but not type 1 collagen matrices, endothelial cells with knockdown of either ADAMTS-1 or syndecan-4 elicited increased migration and showed similarly altered focal adhesion (FA) morphologies, with a higher proportion of larger FA’s and formation of long fibrillar integrin α5-containing FA’s. However, integrin α5-null endothelial cells also displayed enhanced migration in response to ADAMTS-1/syndecan-4 knockdown, indicating that integrin α5 was not the mediator of the altered migratory behaviour. Plating of naïve endothelial cells on cell-conditioned matrix from ADAMTS-1/syndecan-4 knockdown cells demonstrated that the altered behaviour was matrix dependent. Fibulin-1, a known ECM co-factor of ADAMTS-1, was expressed at reduced levels in ADAMTS-1/syndecan-4 knockdown cells. These findings support the notion that ADAMTS-1 and syndecan-4 are functionally interconnected in regulating cell migration and angiogenesis, via the involvement of MMP-9 and fibulin-1 as collaborators


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2275-2283 ◽  
Author(s):  
Naoki Nakayama ◽  
Jae Lee ◽  
Laura Chiu

The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.


2020 ◽  
Vol 22 (1) ◽  
pp. 72
Author(s):  
Anna K. Puszko ◽  
Piotr Sosnowski ◽  
Rachel Rignault-Bricard ◽  
Olivier Hermine ◽  
Gérard Hopfgartner ◽  
...  

Neuropilin-1 (NRP-1), the major co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2), may also independently act with VEGF-A165 to stimulate tumour growth and metastasis. Therefore, there is great interest in compounds that can block VEGF-A165/NRP-1 interaction. Peptidomimetic type inhibitors represent a promising strategy in the treatment of NRP-1-related disorders. Here, we present the synthesis, affinity, enzymatic stability, molecular modeling and in vitro binding evaluation of the branched urea–peptide hybrids, based on our previously reported Lys(hArg)-Dab-Oic-Arg active sequence, where the Lys(hArg) branching has been modified by introducing urea units to replace the peptide bond at various positions. One of the resulting hybrids increased the affinity of the compound for NRP-1 more than 10-fold, while simultaneously improving resistance for proteolytic stability in serum. In addition, ligand binding to NRP-1 induced rapid protein stock exocytotic trafficking to the plasma membrane in breast cancer cells. Examined properties characterize this compound as a good candidate for further development of VEGF165/NRP-1 inhibitors.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Carolina Cubillos-Zapata ◽  
Enrique Hernández-Jiménez ◽  
José Avendaño-Ortiz ◽  
Victor Toledano ◽  
Anibal Varela-Serrano ◽  
...  

Obstructive sleep apnea (OSA) is a syndrome characterized by repeated pauses in breathing induced by a partial or complete collapse of the upper airways during sleep. Intermittent hypoxia (IH), a hallmark characteristic of OSA, has been proposed to be a major determinant of cancer development, and patients with OSA are at a higher risk of tumors. Both OSA and healthy monocytes have been found to show enhanced HIF1α expression under IH. Moreover, these cells under IH polarize toward a tumor-promoting phenotype in a HIF1α-dependent manner and influence tumor growth via vascular endothelial growth factor (VEGF). Monocytes from patients with OSA increased the tumor-induced microenvironment and exhibited an impaired cytotoxicity in a 3D tumor in vitro model as a result of the increased HIF1α secretion. Adequate oxygen restoration both in vivo (under continuous positive airway pressure treatment, CPAP) and in vitro leads the monocytes to revert the tumor-promoting phenotype, demonstrating the plasticity of the innate immune system and the oxygen recovery relevance in this context.


Sign in / Sign up

Export Citation Format

Share Document