scholarly journals Drosophila Aurora B Kinase Is Required for Histone H3 Phosphorylation and Condensin Recruitment during Chromosome Condensation and to Organize the Central Spindle during Cytokinesis

2001 ◽  
Vol 152 (4) ◽  
pp. 669-682 ◽  
Author(s):  
Régis Giet ◽  
David M. Glover

Aurora/Ipl1-related kinases are a conserved family of enzymes that have multiple functions during mitotic progression. Although it has been possible to use conventional genetic analysis to dissect the function of aurora, the founding family member in Drosophila (Glover, D.M., M.H. Leibowitz, D.A. McLean, and H. Parry. 1995. Cell. 81:95–105), the lack of mutations in a second aurora-like kinase gene, aurora B, precluded this approach. We now show that depleting Aurora B kinase using double-stranded RNA interference in cultured Drosophila cells results in polyploidy. aurora B encodes a passenger protein that associates first with condensing chromatin, concentrates at centromeres, and then relocates onto the central spindle at anaphase. Cells depleted of the Aurora B kinase show only partial chromosome condensation at mitosis. This is associated with a reduction in levels of the serine 10 phosphorylated form of histone H3 and a failure to recruit the Barren condensin protein onto chromosomes. These defects are associated with abnormal segregation resulting from lagging chromatids and extensive chromatin bridging at anaphase, similar to the phenotype of barren mutants (Bhat, M.A., A.V. Philp, D.M. Glover, and H.J. Bellen. 1996. Cell. 87:1103–1114.). The majority of treated cells also fail to undertake cytokinesis and show a reduced density of microtubules in the central region of the spindle. This is accompanied by a failure to correctly localize the Pavarotti kinesin-like protein, essential for this process. We discuss these conserved functions of Aurora B kinase in chromosome transmission and cytokinesis.

2001 ◽  
Vol 12 (11) ◽  
pp. 3527-3537 ◽  
Author(s):  
Olga A. Cabello ◽  
Elena Eliseeva ◽  
WeiGong He ◽  
Hagop Youssoufian ◽  
Sharon E. Plon ◽  
...  

Condensin is a conserved 13S heteropentamer composed of two nonidentical structural maintenance of chromosome (SMC) family proteins, in Xenopus XCAP-C and XCAP-E, and three regulatory subunits, XCAP-D2, XCAP-G, and XCAP-H. Both biochemical and genetic analyses have demonstrated an essential role for the 13S condensin complex in mitotic chromosome condensation. Further, a potential requirement for condensin in completion of chromatid arm separation in early anaphase is demonstrated by the mutational phenotypes of the Drosophila homologues ofXCAP-H, barren and XCAP-C,DmSMC4. In this study we have investigated the expression and subcellular distribution of hCAP-H, the human homolog of XCAP-H, in order to better understand its cellular functions. Transcription of hCAP-H was restricted to proliferating cells with highest expression during the G2 phase of the cell cycle. In contrast, cellular hCAP-H protein levels were constant throughout the cell cycle. hCAP-H was found to be associated with mitotic chromosomes exhibiting a nonuniform but symmetric distribution along sister chromatids. The symmetry of hCAP-H association with sister chromatids suggests that there are sequence-dependent domains of condensin aggregation. During interphase hCAP-H, -C, and -E, have distinct punctate nucleolar localization, suggesting that condensin may associate with and modulate the conformation and function of rDNA. hCAP-H association with condensed chromatin was not observed in the early phase of chromosome condensation when histone H3 phosphorylation has already taken place. This finding is consistent with the hypothesis that histone H3 phosphorylation precedes condensin-mediated condensation.


2010 ◽  
Vol 21 (14) ◽  
pp. 2371-2383 ◽  
Author(s):  
Kuo-Tai Yang ◽  
Shu-Kuei Li ◽  
Chih-Chieh Chang ◽  
Chieh-Ju C. Tang ◽  
Yi-Nan Lin ◽  
...  

We previously isolated Aurora-C/Aie1 in a screen for kinases expressed in mouse sperm and eggs. Here, we show the localization of endogenous Aurora-C and examine its roles during female mouse meiosis. Aurora-C was detected at the centromeres and along the chromosome arms in prometaphase I–metaphase I and was concentrated at centromeres at metaphase II, in which Aurora-C also was phosphorylated at Thr171. During the anaphase I–telophase I transition, Aurora-C was dephosphorylated and relocalized to the midzone and midbody. Microinjection of the kinase-deficient Aurora-C (AurC-KD) mRNA into mouse oocytes significantly inhibited Aurora-C activity and caused multiple defects, including chromosome misalignment, abnormal kinetochore–microtubule attachment, premature chromosome segregation, and cytokinesis failure in meiosis I. Furthermore, AurC-KD reduced Aurora-C and histone H3 phosphorylation and inhibited kinetochore localization of Bub1 and BubR1. Similar effects also were observed in the oocytes injected with INCNEP-delIN mRNAs, in which the Aurora-C binding motif was removed. The most dramatic effect observed in AurC-KD–injected oocytes is cytokinesis failure in meiosis I, resulting in producing large polyploid oocytes, a pattern similar to Aurora-C deficiency human spermatozoa. Surprisingly, we detected no Aurora-B protein in mouse oocytes. We propose that Aurora-C, but not Aurora-B, plays essential roles in female mouse meiosis.


2001 ◽  
Vol 276 (28) ◽  
pp. 26656-26665 ◽  
Author(s):  
Mairead E. Murnion ◽  
Richard R. Adams ◽  
Deborah M. Callister ◽  
C. David Allis ◽  
William C. Earnshaw ◽  
...  

2004 ◽  
Vol 166 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Reto Gassmann ◽  
Ana Carvalho ◽  
Alexander J. Henzing ◽  
Sandrine Ruchaud ◽  
Damien F. Hudson ◽  
...  

The chromosomal passenger complex of Aurora B kinase, INCENP, and Survivin has essential regulatory roles at centromeres and the central spindle in mitosis. Here, we describe Borealin, a novel member of the complex. Approximately half of Aurora B in mitotic cells is complexed with INCENP, Borealin, and Survivin; and Borealin binds Survivin and INCENP in vitro. A second complex contains Aurora B and INCENP, but no Borealin or Survivin. Depletion of Borealin by RNA interference delays mitotic progression and results in kinetochore–spindle misattachments and an increase in bipolar spindles associated with ectopic asters. The extra poles, which apparently form after chromosomes achieve a bipolar orientation, severely disrupt the partitioning of chromosomes in anaphase. Borealin depletion has little effect on histone H3 serine10 phosphorylation. These results implicate the chromosomal passenger holocomplex in the maintenance of spindle integrity and suggest that histone H3 serine10 phosphorylation is performed by an Aurora B–INCENP subcomplex.


2001 ◽  
Vol 153 (4) ◽  
pp. 865-880 ◽  
Author(s):  
Richard R. Adams ◽  
Helder Maiato ◽  
William C. Earnshaw ◽  
Mar Carmena

We have performed a biochemical and double-stranded RNA-mediated interference (RNAi) analysis of the role of two chromosomal passenger proteins, inner centromere protein (INCENP) and aurora B kinase, in cultured cells of Drosophila melanogaster. INCENP and aurora B function is tightly interlinked. The two proteins bind to each other in vitro, and DmINCENP is required for DmAurora B to localize properly in mitosis and function as a histone H3 kinase. DmAurora B is required for DmINCENP accumulation at centromeres and transfer to the spindle at anaphase. RNAi for either protein dramatically inhibited the ability of cells to achieve a normal metaphase chromosome alignment. Cells were not blocked in mitosis, however, and entered an aberrant anaphase characterized by defects in sister kinetochore disjunction and the presence of large amounts of amorphous lagging chromatin. Anaphase A chromosome movement appeared to be normal, however cytokinesis often failed. DmINCENP and DmAurora B are not required for the correct localization of the kinesin-like protein Pavarotti (ZEN-4/CHO1/MKLP1) to the midbody at telophase. These experiments reveal that INCENP is required for aurora B kinase function and confirm that the chromosomal passengers have essential roles in mitosis.


2004 ◽  
Vol 16 (2) ◽  
pp. 273
Author(s):  
T. Bui Hong ◽  
L.G. Villa-Diaz ◽  
E. Yamaoka ◽  
T. Miyano

Chromosome condensation is the first step of oocyte maturation. When the oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine (1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during meiotic maturation of pig oocytes, and (2) the effects of protein phosphatase 1/2A (PP1/PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase and histone H3 kinase in this process. Oocyte-cumulus-granulosa cell complexes (OCGCs) were collected from follicles of 4–6mm in diameter. OCGCs were cultured in modified TCM 199 for different periods of time to obtain oocytes at the germinal vesicle (GV, 0h), diakinesis (18h), metaphase I (24–27h), anaphase I to telophase I (30–33h), and metaphase II (42h) stages. To examine the effects of PP1/PP2A inhibitors on the chromosome condensation, oocyte-cumulus-complexes (OCCs) were cultured in modified TCM 199 with either 2.5μM okadaic acid (OA) or 50nM calyculin A (CL-A) for 0.5, 1, 2, 3, 4 and 6h. To inhibit the MAP kinase activity in the oocytes treated with the PP1/PP2A inhibitor, OCCs were cultured in medium containing CL-A and the MEK inhibitor, U0126 (0.1mM). Morphology of the chromosome and nuclear membrane, and phosphorylation of histone H3 were examined by the immunofluorescent microscopy. In each group 30 oocytes were examined for OA or CL-A and 60 oocytes for CL-A+U0126 treatments. Activities of Cdc2 kinase, MAP kinase and histone H3 kinase were also examined. Phosphorylation of histone H3 (Ser10) was not detected in the oocytes at the GV stage. The phosphorylation was first detected in the clump of condensed chromosomes at the diakinesis stage of prophase I and maintained until metaphase II. The kinase assay also showed that histone H3 kinase activity was low in GV oocytes, increased at the diakinesis stage, and then maintained high activity until metaphase II. PP1/PP2A inhibitors induced rapid chromosome condensation in pig oocytes. Histone H3 phosphorylation (Ser10) became detectable together with the chromosome condensation in the treated oocytes after 2h. After 6h, oocytes had highly condensed chromosomes with phosphorylated histone H3 (81% in CL-A- and 71% in OA-treated oocytes). Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and U0126, neither Cdc2 kinase nor MAP kinase were activated, although histone H3 kinase was still activated and chromosomes condensed. These results suggest that phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Futhermore, the chromosome condensation is correlated with histone H3 kinase activity, but not with Cdc2 kinase and MAP kinase activities.


Sign in / Sign up

Export Citation Format

Share Document