scholarly journals The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease

2007 ◽  
Vol 178 (3) ◽  
pp. 477-488 ◽  
Author(s):  
Matthew S. Gentry ◽  
Robert H. Dowen ◽  
Carolyn A. Worby ◽  
Seema Mattoo ◽  
Joseph R. Ecker ◽  
...  

Lafora disease (LD) is a progressive myoclonic epilepsy resulting in severe neurodegeneration followed by death. A hallmark of LD is the accumulation of insoluble polyglucosans called Lafora bodies (LBs). LD is caused by mutations in the gene encoding the phosphatase laforin, which reportedly exists solely in vertebrates. We utilized a bioinformatics screen to identify laforin orthologues in five protists. These protists evolved from a progenitor red alga and synthesize an insoluble carbohydrate whose composition closely resembles LBs. Furthermore, we show that the kingdom Plantae, which lacks laforin, possesses a protein with laforin-like properties called starch excess 4 (SEX4). Mutations in the Arabidopsis thaliana SEX4 gene results in a starch excess phenotype reminiscent of LD. We demonstrate that Homo sapiens laforin complements the sex4 phenotype and propose that laforin and SEX4 are functional equivalents. Finally, we show that laforins and SEX4 dephosphorylate a complex carbohydrate and form the only family of phosphatases with this activity. These results provide a molecular explanation for the etiology of LD.

2021 ◽  
Author(s):  
Zoe R. Simmons ◽  
Savita Sharma ◽  
Jeremiah Wayne ◽  
Sheng Li ◽  
Craig W. Vander Kooi ◽  
...  

AbstractMutations in the gene encoding the glycogen phosphatase laforin result in the fatal childhood epilepsy Lafora disease (LD). A cellular hallmark of LD is cytoplasmic, hyper-phosphorylated, glycogen-like aggregates called Lafora bodies (LBs) that form in nearly all tissues and drive disease progression. Additional tools are needed to define the cellular function of laforin, understand the pathological role of laforin in LD, and determine the role of glycogen phosphate in glycogen metabolism. We present the generation and characterization of laforin nanobodies. We identify multiple classes of specific laforin-binding nanobodies and determine their binding epitopes using hydrogen deuterium exchange (HDX) mass spectrometry. Further, one family of nanobodies is identified that serves as an inhibitor of laforin catalytic activity. The laforin nanobodies are an important set of tools that open new avenues to define unresolved questions.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

1999 ◽  
Vol 22 (2) ◽  
pp. 159-167 ◽  
Author(s):  
E. S. JENKINS ◽  
W. PAUL ◽  
M. CRAZE ◽  
C. A. WHITELAW ◽  
A. WEIGAND ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Tatiana P. Fedorchuk ◽  
Inga A. Kireeva ◽  
Vera K. Opanasenko ◽  
Vasily V. Terentyev ◽  
Natalia N. Rudenko ◽  
...  

We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.


2019 ◽  
Vol 61 (2) ◽  
pp. 381-392
Author(s):  
Irina Malinova ◽  
Stella Kössler ◽  
Tom Orawetz ◽  
Ulrike Matthes ◽  
Slawomir Orzechowski ◽  
...  

Abstract Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism.


Sign in / Sign up

Export Citation Format

Share Document