scholarly journals Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly

2009 ◽  
Vol 184 (3) ◽  
pp. 365-372 ◽  
Author(s):  
Alberto Toso ◽  
Jennifer R. Winter ◽  
Ainslie J. Garrod ◽  
Ana C. Amaro ◽  
Patrick Meraldi ◽  
...  

In animal somatic cells, bipolar spindle formation requires separation of the centrosome-based spindle poles. Centrosome separation relies on multiple pathways, including cortical forces and antiparallel microtubule (MT) sliding, which are two activities controlled by the protein kinase aurora A. We previously found that depletion of the human kinetochore protein Mcm21RCENP-O results in monopolar spindles, raising the question as to whether kinetochores contribute to centrosome separation. In this study, we demonstrate that kinetochores promote centrosome separation after nuclear envelope breakdown by exerting a pushing force on the kinetochore fibers (k-fibers), which are bundles of MTs that connect kinetochores to centrosomes. This force is based on poleward MT flux, which incorporates new tubulin subunits at the plus ends of k-fibers and requires stable k-fibers to drive centrosomes apart. This kinetochore-dependent force becomes essential for centrosome separation if aurora A is inhibited. We conclude that two mechanisms control centrosome separation during prometaphase: an aurora A–dependent pathway and a kinetochore-dependent pathway that relies on k-fiber–generated pushing forces.

2012 ◽  
Vol 23 (3) ◽  
pp. 401-411 ◽  
Author(s):  
William T. Silkworth ◽  
Isaac K. Nardi ◽  
Raja Paul ◽  
Alex Mogilner ◽  
Daniela Cimini

Spindle assembly, establishment of kinetochore attachment, and sister chromatid separation must occur during mitosis in a highly coordinated fashion to ensure accurate chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to allow interaction between microtubules of the mitotic spindle and the kinetochores. It was previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome separation and that centrosome separation can be either complete at the time of NEB or can be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attachment or chromosome segregation. We used a combination of experimental and computational approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not “search” the entire cellular space, leading to formation of large numbers of syntelic attachments, which can be an intermediate stage in the formation of merotelic kinetochores.


2004 ◽  
Vol 166 (4) ◽  
pp. 473-478 ◽  
Author(s):  
Neil J. Ganem ◽  
Duane A. Compton

Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore–microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle bipolarity. These treatments failed to restore bipolarity to cells lacking the activity of the kinesin Eg5. Thus, two independent pathways contribute to spindle bipolarity, with the Eg5-dependent pathway using motor force to drive spindle bipolarity and the Kif2a-dependent pathway relying on microtubule polymer dynamics to generate force for spindle bipolarity.


1995 ◽  
Vol 131 (5) ◽  
pp. 1125-1131 ◽  
Author(s):  
D Zhang ◽  
R B Nicklas

Chromosomes are known to enhance spindle microtubule assembly in grasshopper spermatocytes, which suggested to us that chromosomes might play an essential role in the initiation of spindle formation. Chromosomes might, for example, activate other spindle components such as centrosomes and tubulin subunits upon the breakdown of the nuclear envelope. We tested this possibility in living grasshopper spermatocytes. We ruptured the nuclear envelope during prophase, which prematurely exposed the centrosomes to chromosomes and nuclear sap. Spindle assembly was promptly initiated. In contrast, assembly of the spindle was completely inhibited if the nucleus was mechanically removed from a late prophase cell. Other experiments showed that the trigger for spindle assembly is associated with the chromosomes; other constituents of the nucleus cannot initiate spindle assembly in the absence of the chromosomes. The initiation of spindle assembly required centrosomes as well as chromosomes. Extracting centrosomes from late prophase cells completely inhibited spindle assembly after dissolution of the nuclear envelope. We conclude that the normal formation of a bipolar spindle in grasshopper spermatocytes is regulated by chromosomes. A possible explanation is an activator, perhaps a chromosomal protein (Yeo, J.-P., F. Alderuccio, and B.-H. Toh. 1994a. Nature (Lond.). 367: 288-291), that promotes and stabilizes the assembly of astral microtubules and thus promotes assembly of the spindle.


2019 ◽  
Vol 30 (22) ◽  
pp. 2802-2813 ◽  
Author(s):  
Yutaka Shirasugi ◽  
Masamitsu Sato

Bipolar spindles are organized by motor proteins that generate microtubule-­dependent forces to separate the two spindle poles. The fission yeast Cut7 (kinesin-5) is a plus-end-directed motor that generates the outward force to separate the two spindle poles, whereas the minus-end-directed motor Pkl1 (kinesin-14) generates the inward force. Balanced forces by these antagonizing kinesins are essential for bipolar spindle organization in mitosis. Here, we demonstrate that chromosomes generate another outward force that contributes to the bipolar spindle assembly. First, it was noted that the cut7 pkl1 double knockout failed to separate spindle poles in meiosis I, although the mutant is known to succeed it in mitosis. It was assumed that this might be because meiotic kinetochores of bivalent chromosomes joined by cross-overs generate weaker tensions in meiosis I than the strong tensions in mitosis generated by tightly tethered sister kinetochores. In line with this idea, when meiotic mono-oriented kinetochores were artificially converted to a mitotic bioriented layout, the cut7 pkl1 mutant successfully separated spindle poles in meiosis I. Therefore, we propose that spindle pole separation is promoted by outward forces transmitted from kinetochores to spindle poles through microtubules.


2014 ◽  
Vol 55 (4) ◽  
pp. 578-591 ◽  
Author(s):  
Vladimir Joukov ◽  
Johannes C. Walter ◽  
Arcangela De Nicolo

2013 ◽  
Vol 202 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Felix Bärenz ◽  
Daigo Inoue ◽  
Hideki Yokoyama ◽  
Justus Tegha-Dunghu ◽  
Stephanie Freiss ◽  
...  

Meiotic maturation in vertebrate oocytes is an excellent model system for microtubule reorganization during M-phase spindle assembly. Here, we surveyed changes in the pattern of microtubule-interacting proteins upon Xenopus laevis oocyte maturation by quantitative proteomics. We identified the synovial sarcoma X breakpoint protein (SSX2IP) as a novel spindle protein. Using X. laevis egg extracts, we show that SSX2IP accumulated at spindle poles in a Dynein-dependent manner and interacted with the γ-tubulin ring complex (γ-TuRC) and the centriolar satellite protein PCM-1. Immunodepletion of SSX2IP impeded γ-TuRC loading onto centrosomes. This led to reduced microtubule nucleation and spindle assembly failure. In rapidly dividing blastomeres of medaka (Oryzias latipes) and in somatic cells, SSX2IP knockdown caused fragmentation of pericentriolar material and chromosome segregation errors. We characterize SSX2IP as a novel centrosome maturation and maintenance factor that is expressed at the onset of vertebrate development. It preserves centrosome integrity and faithful mitosis during the rapid cleavage division of blastomeres and in somatic cells.


1996 ◽  
Vol 134 (2) ◽  
pp. 455-464 ◽  
Author(s):  
H J Matthies ◽  
H B McDonald ◽  
L S Goldstein ◽  
W E Theurkauf

We have used time-lapse laser scanning confocal microscopy to directly examine microtubule reorganization during meiotic spindle assembly in living Drosophila oocytes. These studies indicate that the bipolarity of the meiosis I spindle is not the result of a duplication and separation of centrosomal microtubule organizing centers (MTOCs). Instead, microtubules first associate with a tight chromatin mass, and then bundle to form a bipolar spindle that lacks asters. Analysis of mutant oocytes indicates that the Non-Claret Disjunctional (NCD) kinesin-like protein is required for normal spindle assembly kinetics and stabilization of the spindle during metaphase arrest. Immunolocalization analyses demonstrate that NCD is associated with spindle microtubules, and that the centrosomal components gamma-tubulin, CP-190, and CP-60 are not concentrated at the meiotic spindle poles. Based on these observations, we propose that microtubule bundling by the NCD kinesin-like protein promotes assembly of a stable bipolar spindle in the absence of typical MTOCs.


1976 ◽  
Vol 70 (1) ◽  
pp. 75-85 ◽  
Author(s):  
G Sluder

Spindle assembly is studied in the eggs of the sea urchin Lytechinus variegatus by experimentally varying the amount of polymerizable tubulin within the egg. Aliquots of fertilized eggs from the same female are individually pulsed for 1-6 min with 1 X 10(-6) M Colcemid at least 20 min before first nuclear envelope breakdown. This treatment inactivates a portion of the cellular tubulin before the spindle is formed. Upon entering mitosis, treated eggs form functional spindles that are reduced in length and birefringent retardation but not width. With increased exposure to Colcemid, the length and retardation of the metaphase spindles are progressively reduced. Similar results are obtained by pulsing the eggs with Colcemid before fertilization, which demonstrates that the tubulin found in unfertilized sea urchin eggs is later used in spindle formation. Spindles, once assembled, are responsive to increases in the amount of polymerizable tubulin within the cell. Rapid increases in the amount of polymerizable tubulin within a Colcemid-treated cell can be experimentally effected by irradiating the cells with 366-nm light. This treatment photochemically inactivates the Colcemid, thereby freeing the tubulin to polymerize. Upon irradiation, the small prometaphase spindles of Colcemid-treated cells immediately increase in length and retardation. In these irradiated cells, spindle length and retardation increase as much as four times faster than they do during prometaphase for normal spindles. This suggests that the rate of the normal prometaphase increase in retardation and spindle size may be determined by factors other than the maximum rate of tubulin polymerization in the cell.


2008 ◽  
Vol 27 (24) ◽  
pp. 3235-3245 ◽  
Author(s):  
Marvin E Tanenbaum ◽  
Libor Macůrek ◽  
Niels Galjart ◽  
René H Medema

2012 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
David Reboutier ◽  
Marie-Bérengère Troadec ◽  
Jean-Yves Cremet ◽  
Kenji Fukasawa ◽  
Claude Prigent

Aurora A (AurA) is a major mitotic protein kinase involved in centrosome maturation and spindle assembly. Nucleophosmin/B23 (NPM) is a pleiotropic nucleolar protein involved in a variety of cellular processes including centrosome maturation. In the present study, we report that NPM is a strong activator of AurA kinase activity. NPM and AurA coimmunoprecipitate and colocalize to centrosomes in G2 phase, where AurA becomes active. In contrast with previously characterized AurA activators, NPM does not trigger autophosphorylation of AurA on threonine 288. NPM induces phosphorylation of AurA on serine 89, and this phosphorylation is necessary for activation of AurA. These data were confirmed in vivo, as depletion of NPM by ribonucleic acid interference eliminated phosphorylation of CDC25B on S353 at the centrosome, indicating a local loss of AurA activity. Our data demonstrate that NPM is a strong activator of AurA kinase activity at the centrosome and support a novel mechanism of activation for AurA.


Sign in / Sign up

Export Citation Format

Share Document