scholarly journals Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors

2009 ◽  
Vol 187 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Jinlan Chang ◽  
Fred D. Mast ◽  
Andrei Fagarasanu ◽  
Dorian A. Rachubinski ◽  
Gary A. Eitzen ◽  
...  

In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.

2007 ◽  
Vol 18 (5) ◽  
pp. 1781-1789 ◽  
Author(s):  
Hadiya Watson ◽  
Juan S. Bonifacino

The sorting of integral membrane proteins such as carboxypeptidase S (Cps1p) into the luminal vesicles of multivesicular bodies (MVBs) in Saccharomyces cerevisiae requires ubiquitination of their cytosolic domains by the ubiquitin ligases Rsp5p and/or Tul1p. An exception is Sna3p, which does not require ubiquitination for entry into MVBs. The mechanism underlying this ubiquitination-independent MVB sorting pathway has not yet been characterized. Here, we show that Sna3p sorting into the MVB pathway depends on a direct interaction between a PPAY motif within its C-terminal cytosolic tail and the WW domains of Rsp5p. Disruption of this interaction inhibits vacuolar targeting of Sna3p and causes its accumulation in a compartment that overlaps only partially with MVBs. Surprisingly, Sna3p does require a functional ubiquitin-ligase HECT domain within Rsp5p; however, the dependence of Sna3p on HECT domain activity is distinct from that of Cps1p. Last, we show that Sna3p requires neither Tul1p nor the transmembrane adaptor protein Bsd2p for its MVB sorting. Our data demonstrate that Sna3p follows a novel ubiquitination-independent, but Rsp5p-mediated, sorting pathway to the vacuole.


1997 ◽  
Vol 139 (1) ◽  
pp. 75-93 ◽  
Author(s):  
Douglas J. DeMarini ◽  
Alison E.M. Adams ◽  
Hanna Fares ◽  
Claudio De Virgilio ◽  
Giorgio Valle ◽  
...  

Just before bud emergence, a Saccharomyces cerevisiae cell forms a ring of chitin in its cell wall; this ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell. The chitin ring seems to be formed largely or entirely by chitin synthase III, one of the three known chitin synthases in S. cerevisiae. The chitin ring does not form normally in temperature-sensitive mutants defective in any of four septins, a family of proteins that are constituents of the “neck filaments” that lie immediately subjacent to the plasma membrane in the mother-bud neck. In addition, a synthetic-lethal interaction was found between cdc12-5, a temperature-sensitive septin mutation, and a mutant allele of CHS4, which encodes an activator of chitin synthase III. Two-hybrid analysis revealed no direct interaction between the septins and Chs4p but identified a novel gene, BNI4, whose product interacts both with Chs4p and Cdc10p and with one of the septins, Cdc10p; this analysis also revealed an interaction between Chs4p and Chs3p, the catalytic subunit of chitin synthase III. Bni4p has no known homologues; it contains a predicted coiled-coil domain, but no other recognizable motifs. Deletion of BNI4 is not lethal, but causes delocalization of chitin deposition and aberrant cellular morphology. Overexpression of Bni4p also causes delocalization of chitin deposition and produces a cellular morphology similar to that of septin mutants. Immunolocalization experiments show that Bni4p localizes to a ring at the mother-bud neck that lies predominantly on the mother-cell side (corresponding to the predominant site of chitin deposition). This localization depends on the septins but not on Chs4p or Chs3p. A GFP-Chs4p fusion protein also localizes to a ring at the mother-bud neck on the mother-cell side. This localization is dependent on the septins, Bni4p, and Chs3p. Chs3p, whose normal localization is similar to that of Chs4p, does not localize properly in bni4, chs4, or septin mutant strains or in strains that accumulate excess Bni4p. In contrast, localization of the septins is essentially normal in bni4, chs4, and chs3 mutant strains and in strains that accumulate excess Bni4p. Taken together, these results suggest that the normal localization of chitin synthase III activity is achieved by assembly of a complex in which Chs3p is linked to the septins via Chs4p and Bni4p.


1999 ◽  
Vol 19 (5) ◽  
pp. 3435-3442 ◽  
Author(s):  
Gregor Steglich ◽  
Walter Neupert ◽  
Thomas Langer

ABSTRACT Prohibitins comprise a protein family in eukaryotic cells with potential roles in senescence and tumor suppression. Phb1p and Phb2p, members of the prohibitin family in Saccharomyces cerevisiae, have been implicated in the regulation of the replicative life span of the cells and in the maintenance of mitochondrial morphology. The functional activities of these proteins, however, have not been elucidated. We demonstrate here that prohibitins regulate the turnover of membrane proteins by the m-AAA protease, a conserved ATP-dependent protease in the inner membrane of mitochondria. The m-AAA protease is composed of the homologous subunits Yta10p (Afg3p) and Yta12p (Rca1p). Deletion ofPHB1 or PHB2 impairs growth of Δyta10 or Δyta12 cells but does not affect cell growth in the presence of the m-AAA protease. A prohibitin complex with a native molecular mass of approximately 2 MDa containing Phb1p and Phb2p forms a supercomplex with them-AAA protease. Proteolysis of nonassembled inner membrane proteins by the m-AAA protease is accelerated in mitochondria lacking Phb1p or Phb2p, indicating a negative regulatory effect of prohibitins on m-AAA protease activity. These results functionally link members of two conserved protein families in eukaryotes to the degradation of membrane proteins in mitochondria.


2000 ◽  
Vol 278 (1) ◽  
pp. C163-C173 ◽  
Author(s):  
Assaf Arnon ◽  
John M. Hamlyn ◽  
Mordecai P. Blaustein

In many nonexcitable cells, hormones and neurotransmitters activate Na+ influx and mobilize Ca2+ from intracellular stores. The stores are replenished by Ca2+influx via “store-operated” Ca2+ channels (SOC). The main routes of Na+ entry in these cells are unresolved, and no role for Na+ in signaling has been recognized. We demonstrate that the SOC are a major Na+ entry route in arterial myocytes. Unloading of the Ca2+stores with cyclopiazonic acid (a sarcoplasmic reticulum Ca2+ pump inhibitor) and caffeine induces a large external Na+-dependent rise in the cytosolic Na+ concentration. One component of this rise in cytosolic Na+ concentration is likely due to Na+/Ca2+exchange; it depends on elevation of cytosolic Ca2+ and is insensitive to 10 mM Mg2+ and 10 μM La3+. Another component is inhibited by Mg2+ and La3+, blockers of SOC; this component persists in cells preloaded with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid to buffer Ca2+ transients and prevent Na+/Ca2+exchange-mediated Na+ entry. This Na+ entry apparently is mediated by SOC. The Na+ entry influences Na+ pump activity and Na+/Ca2+exchange and has unexpectedly large effects on cell-wide Ca2+ signaling. The SOC pathway may be a general mechanism by which Na+ participates in signaling in many types of cells.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Ke Zhang ◽  
Xue-Chang Wu ◽  
Dao-Qiong Zheng ◽  
Thomas D. Petes

ABSTRACT Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae , regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. IMPORTANCE In the yeast Saccharomyces cerevisiae , recombination is usually studied in cells that undergo meiosis at 25°C or 30°C. In a genome-wide analysis, we showed that the locations of genomic regions with high and low levels of meiotic recombination (hot spots and cold spots, respectively) differed dramatically in cells sporulated at 14°C, 30°C, and 37°C. Thus, in yeast, and likely in other non-warm-blooded organisms, genetic maps are strongly affected by the environment.


Sign in / Sign up

Export Citation Format

Share Document