scholarly journals Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

2011 ◽  
Vol 192 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Marjorie A. Kuipers ◽  
Timothy J. Stasevich ◽  
Takayo Sasaki ◽  
Korey A. Wilson ◽  
Kristin L. Hazelwood ◽  
...  

The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.

1997 ◽  
Vol 139 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Tin Tin Su ◽  
Patrick H. O'Farrell

Minichromosome maintenance (MCM) proteins are essential DNA replication factors conserved among eukaryotes. MCMs cycle between chromatin bound and dissociated states during each cell cycle. Their absence on chromatin is thought to contribute to the inability of a G2 nucleus to replicate DNA. Passage through mitosis restores the ability of MCMs to bind chromatin and the ability to replicate DNA. In Drosophila early embryonic cell cycles, which lack a G1 phase, MCMs reassociate with condensed chromosomes toward the end of mitosis. To explore the coupling between mitosis and MCM–chromatin interaction, we tested whether this reassociation requires mitotic degradation of cyclins. Arrest of mitosis by induced expression of nondegradable forms of cyclins A and/or B showed that reassociation of MCMs to chromatin requires cyclin A destruction but not cyclin B destruction. In contrast to the earlier mitoses, mitosis 16 (M16) is followed by G1, and MCMs do not reassociate with chromatin at the end of M16. dacapo mutant embryos lack an inhibitor of cyclin E, do not enter G1 quiescence after M16, and show mitotic reassociation of MCM proteins. We propose that cyclin E, inhibited by Dacapo in M16, promotes chromosome binding of MCMs. We suggest that cyclins have both positive and negative roles in controlling MCM–chromatin association.


2000 ◽  
Vol 20 (22) ◽  
pp. 8602-8612 ◽  
Author(s):  
Juan Méndez ◽  
Bruce Stillman

ABSTRACT Evidence obtained from studies with yeast and Xenopusindicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G1 and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.


2015 ◽  
Vol 112 (36) ◽  
pp. 11223-11228 ◽  
Author(s):  
Irina Bruck ◽  
Daniel L. Kaplan

Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.


2020 ◽  
Author(s):  
Jake Hill ◽  
Patrik Eickhoff ◽  
Lucy S. Drury ◽  
Alessandro Costa ◽  
John F.X. Diffley

Origins of eukaryotic DNA replication are ‘licensed’ during G1 phase of the cell cycle by loading the six related minichromosome maintenance (MCM) proteins into a double hexameric ring around double-stranded DNA. In S phase, some double hexamers (MCM DHs) are converted into active CMG (Cdc45-MCM-GINS) helicases which nucleate assembly of bidirectional replication forks. The remaining unfired MCM DHs act as ‘dormant’ origins to provide backup replisomes in the event of replication fork stalling. The fate of unfired MCM DHs during replication is unknown. Here we show that active replisomes cannot remove unfired MCM DHs. Instead, they are pushed ahead of the replisome where they prevent fork convergence during replication termination and replisome progression through nucleosomes. Pif1 helicase, together with the replisome, can remove unfired MCM DHs specifically from replicating DNA, allowing efficient replication and termination. Our results provide an explanation for how excess replication license is removed during S phase.


Author(s):  
Jake Hill ◽  
Patrik Eickhoff ◽  
Lucy Drury ◽  
Alessandro Costa ◽  
John Diffley

Abstract Origins of eukaryotic DNA replication are ‘licensed’ during G1 phase of the cell cycle by loading the six related minichromosome maintenance (MCM) proteins into a double hexameric ring around double-stranded DNA. In S phase, some double hexamers (MCM DHs) are converted into active CMG (Cdc45-MCM-GINS) helicases which nucleate assembly of bidirectional replication forks. The remaining unfired MCM DHs act as ‘dormant’ origins to provide backup replisomes in the event of replication fork stalling. The fate of unfired MCM DHs during replication is unknown. Here we show that active replisomes cannot remove unfired MCM DHs. Instead, they are pushed ahead of the replisome where they prevent fork convergence during replication termination and replisome progression through nucleosomes. Pif1 helicase, together with the replisome, can remove unfired MCM DHs specifically from replicating DNA, allowing efficient replication and termination. Our results provide an explanation for how excess replication license is removed during S phase.


2002 ◽  
Vol 13 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Karola Lindner ◽  
Juraj Gregán ◽  
Stuart Montgomery ◽  
Stephen E. Kearsey

A critical event in eukaryotic DNA replication involves association of minichromosome maintenance (MCM2–7) proteins with origins, to form prereplicative complexes (pre-RCs) that are competent for initiation. The ability of mutants defective in MCM2–7 function to complete meiosis had suggested that pre-RC components could be irrelevant to premeiotic S phase. We show here that MCM2–7 proteins bind to chromatin in fission yeast cells preparing for meiosis and during premeiotic S phase in a manner suggesting they in fact are required for DNA replication in the meiotic cycle. This is confirmed by analysis of a degron mcm4 mutant, which cannot carry out premeiotic DNA replication. Later in meiosis, Mcm4 chromatin association is blocked between meiotic nuclear divisions, presumably accounting for the absence of a second round of DNA replication. Together, these results emphasize similarity between replication mechanisms in mitotic and meiotic cell cycles.


2008 ◽  
Vol 28 (5) ◽  
pp. 1724-1738 ◽  
Author(s):  
Julie M. Bailis ◽  
Douglas D. Luche ◽  
Tony Hunter ◽  
Susan L. Forsburg

ABSTRACT The minichromosome maintenance (MCM) complex plays essential, conserved roles throughout DNA synthesis: first, as a component of the prereplication complex at origins and, then, as a helicase associated with replication forks. Here we use fission yeast (Schizosaccharomyces pombe) as a model to demonstrate a role for the MCM complex in protecting replication fork structure and promoting recovery from replication arrest. Loss of MCM function generates lethal double-strand breaks at sites of DNA synthesis during replication elongation, suggesting replication fork collapse. MCM function also maintains the stability of forks stalled by hydroxyurea that activate the replication checkpoint. In cells where the checkpoint is activated, Mcm4 binds the Cds1 kinase and undergoes Cds1-dependent phosphorylation. MCM proteins also interact with proteins involved in homologous recombination, which promotes recovery from arrest by ensuring normal mitosis. We suggest that the MCM complex links replication fork stabilization with checkpoint arrest and recovery through direct interactions with checkpoint and recombination proteins and that this role in S-phase genome stability is conserved from yeast to human cells.


2021 ◽  
Author(s):  
Qianqian Sun ◽  
Kun Liu ◽  
Fangzhou Li ◽  
Bingquan Qiu ◽  
Zhisong Fu ◽  
...  

Abstract BackgroundThe disassembly of the replisome plays an essential role in maintaining genome stability at the termination of DNA replication. However, the mechanism of replisome disassembly remains unknown in human. In this study, we screened E3 ligases and deubiquitinases (DUBs) for the ubiquitination of minichromosome maintenance protein (MCM) 7 and provided evidence of this process driving CMG helicase disassembly in human tumor cells. MethodsSILAC-MS/MS was analyzed to identify ubiquitinated proteins in HeLa cells. The ubiquitination/deubiquitylation assay in vitro and in vivo were detected by Western blot. Thymidine and HU were implied to synchronized cell cycle,and detect the role of ubiquitinated MCM7 in cell cycle. Cell fractionation assay was used to detect the function of ubiquitination of MCM7 in chromatin and non-chromatin. Aphidicolin、Etoposide、ICRF-193 and IR were applied to cause replication fork stalling. MG-132 and NMS-873 were used to inhibit the proteasome degradation and p97 segregase. Flow cytometer and FlowJo flow cytometry software were used to cell cycle analysis.ResultsIn our study, we found that the ubiquitin ligase RNF8 catalyzes the k63-linked poly-ubiquitination of MCM7 both in vivo and in vitro, and lysine 145 of MCM7 is the primary ubiquitination site. Moreover, the poly-ubiquitination of MCM7 mainly exists in the chromatin, which is dynamically regulated by the cell cycle, mainly occurs in the late S phase. And DNA damage can significantly reduce the poly-ubiquitylation of MCM7 in the late S phage. Furthermore, the proteasome, p97 segregase, USP29 and ATXN3 are required for the removal of MCM7 ubiquitination to promote the disassembly of CMG on chromatin. ConclusionsIn the late S phage of cell cycle, RNF8 catalyzes the poly-ubiquitination of MCM7, and then initiates the disassembly of CMG helicase from chromatin, which is mediated by p97, proteasome, USP29 and ATXN3 in human. We reveal the novel function of the poly-ubiquitylation of MCM7, which is a regulatory signal to control CMG complex unloading at replication termination sites.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3421-3421
Author(s):  
Rodger E. Tiedemann ◽  
Xinliang Mao ◽  
Chng-Xin Shi ◽  
Yuan Xiao Zhang ◽  
Stephen Palmer ◽  
...  

Abstract Multiple myeloma tumors universally target one of the three human cyclin D genes (CCND1, CCND2 or CCND3) for dysregulation (Bergsagel et al., 2005, Blood, 106:296). Using a lentivirus expressing CCND2 RNAi we first tested the effects of selective cyclin D2 knock down on My5 and H929 myeloma cell lines and found G0/G1 phase arrest, increased apoptosis and significant selective disadvantage in transfected cells. By comparison, knockout mouse models indicate that most somatic tissues can develop in the total absence of cyclin D1, D2 and D3 (Kozar et al., 2004, Cell,118:477). Targeted inhibition of specific cyclin D expression is therefore a rational therapeutic strategy in myeloma. To identify novel pharmaceutical inhibitors of CCND2 transactivation we developed an assay employing NIH 3T3 cells stably co-expressing the CCND2 transactivator c-Maf and the cyclin D2 promoter driving firefly luciferase (luc) and screened the Lopac (n=1280), Prestwick (n=1120) and Spectrum (n=2000) libraries of drugs and natural compounds. In a parallel MTS assay, the effect of each compound on 3T3 viability was determined, allowing exclusion of compounds that caused secondary suppression of CCND2 due to non-specific cytotoxicity. From the screen we identified 10 c-Maf independent putative CCND2 inhibitors. These included monensin, patulin, β-lapachone, camptothecin, dihydrogambogic acid, gentian violet, thapsigargin, brefeldin A, pristimerin and kinetin riboside. Three of the 10 compounds (gentian violet, thapsigargin and patulin) were not studied further due to toxicity cited in the literature. Subsequent validation studies using selected compounds in human myeloma cell lines (HMCL) confirmed successful suppression of both cyclin D2 and D1 proteins. Each of these compounds was then shown to be cytotoxic to a genetically diverse and standardized panel of 14 HMCL in MTT assays: monensin (10–760 nM), camptothecin (5–700nM), dihydrogambogic acid (250–800 nM), pristimerin (150–500 nM) and kinetin riboside (2.5–20μM). Cell cycle analysis confirmed induction of G0/G1 phase arrest for most compounds, consistent with cyclin D inhibition. However, camptothecin and b-lapachone induced S-phase arrest, suggesting secondary suppression of cyclin D by virtue of S-phase activity. Unsorted myeloma patient bone marrow samples demonstrated selective activity for pristimerin, dihydrogambogic acid and kinetin riboside against CD138+ myeloma cells compared with non malignant hematopoietic cells; by contrast monensin showed almost equal toxicity for normal cells. The triterpenoid, pristimerin, showed potent anti-myeloma activity and was examined in greater detail. Studies confirm that pristimerin rapidly inhibits cyclin D1, D2 and D3 expression (<6 hours) at nanomolar concentrations and induces apoptosis of primary myeloma cells characterized by caspase 9 cleavage and Annexin V binding. While pristimerin is cytotoxic to HMCL and patient myeloma cells at 0.1–0.15 mg/L, toxicity studies in vivo indicate that the drug is tolerated in mice at 2.5 mg/kg i.p. daily. In vivo activity against a xenograft model is currently being determined. Overall this targeted chemical biology screen has identified several compounds, including the triterpenoid, pristimerin, that are being further characterized for promising preclinical anti-myeloma activity.


2006 ◽  
Vol 26 (23) ◽  
pp. 9116-9125 ◽  
Author(s):  
Amit Kumar ◽  
Miriam Marqués ◽  
Ana C. Carrera

ABSTRACT Phosphoinositide 3-kinase (PI3K) is one of the early-signaling molecules induced by growth factor (GF) receptor stimulation that are necessary for cell growth and cell cycle entry. PI3K activation occurs at two distinct time points during G1 phase. The first peak is observed immediately following GF addition and the second in late G1, before S phase entry. This second activity peak is essential for transition from G1 to S phase; nonetheless, the mechanism by which this peak is induced and regulates S phase entry is poorly understood. Here, we show that activation of Ras and Tyr kinases is required for late-G1 PI3K activation. Inhibition of late-G1 PI3K activity results in low c-Myc and cyclin A expression, impaired Cdk2 activity, and reduced loading of MCM2 (minichromosome maintenance protein) onto chromatin. The primary consequence of inhibiting late-G1 PI3K was c-Myc destabilization, as conditional activation of c-Myc in advanced G1 as well as expression of a stable c-Myc mutant rescued all of these defects, restoring S phase entry. These results show that Tyr kinases and Ras cooperate to induce the second PI3K activity peak in G1, which mediates initiation of DNA synthesis by inducing c-Myc stabilization.


Sign in / Sign up

Export Citation Format

Share Document