meiotic cycle
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

PLoS Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. e3001067
Author(s):  
Aleksandar Vještica ◽  
Melvin Bérard ◽  
Gaowen Liu ◽  
Laura Merlini ◽  
Pedro Junior Nkosi ◽  
...  

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Renata Coelho Rodrigues Noronha ◽  
Bruno Rafael Ribeiro de Almeida ◽  
Marlyson Jeremias Rodrigues da Costa ◽  
Cleusa Yoshiko Nagamachi ◽  
Cesar Martins ◽  
...  

Abstract Heterozygous chromosomal rearrangements can result in failures during the meiotic cycle and the apoptosis of germline, making carrier individuals infertile. The Amazon frog Leptodactylus pentadactylus has a meiotic multivalent, composed of 12 sex chromosomes. The mechanisms by which this multi-chromosome system maintains fertility in males of this species remain undetermined. In this study we investigated the meiotic behavior of this multivalent to understand how synapse, recombination and epigenetic modifications contribute to maintaining fertility and chromosomal sexual determination in this species. Our sample had 2n = 22, with a ring formed by ten chromosomes in meiosis, indicating a new system of sex determination for this species (X1Y1X2Y2X3Y3X4Y4X5Y5). Synapsis occurs in the homologous terminal portion of the chromosomes, while part of the heterologous interstitial regions performed synaptic adjustment. The multivalent center remains asynaptic until the end of pachytene, with interlocks, gaps and rich-chromatin in histone H2A phosphorylation at serine 139 (γH2AX), suggesting transcriptional silence. In late pachytene, paired regions show repair of double strand-breaks (DSBs) with RAD51 homolog 1 (Rad51). These findings suggest that Rad51 persistence creates positive feedback at the pachytene checkpoint, allowing meiosis I to progress normally. Additionally, histone H3 trimethylation at lysine 27 in the pericentromeric heterochromatin of this anuran can suppress recombination in this region, preventing failed chromosomal segregation. Taken together, these results indicate that these meiotic adaptations are required for maintenance of fertility in L. pentadactylus.


2020 ◽  
Author(s):  
Aleksandar Vještica ◽  
Melvin Bérard ◽  
Gaowen Liu ◽  
Laura Merlini ◽  
Pedro Junior Nkosi ◽  
...  

AbstractTo ensure genome stability, sexually reproducing organisms require that mating brings together exactly two haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins post-fusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least two mechanisms where the zygotic fate imposed by Mei2 and the cell cycle re-entry triggered by Mei3 synergize to prevent zygotic mating.


2020 ◽  
Vol 37 (12) ◽  
pp. 3485-3506 ◽  
Author(s):  
Vasiliki Koutsouveli ◽  
Paco Cárdenas ◽  
Nadiezhda Santodomingo ◽  
Anabel Marina ◽  
Esperanza Morato ◽  
...  

Abstract All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.


2009 ◽  
Vol 20 (7) ◽  
pp. 1960-1969 ◽  
Author(s):  
Karine Narbonne-Reveau ◽  
Mary Lilly

The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21Cip1/p27Kip1/p57Kip2-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap−/− females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap−/− ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap−/− DNA damage phenotype. Importantly, the DNA damage observed in dap−/− ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap−/− ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.


2004 ◽  
Vol 15 (5) ◽  
pp. 2230-2242 ◽  
Author(s):  
Yaara Ofir ◽  
Shira Sagee ◽  
Noga Guttmann-Raviv ◽  
Lilach Pnueli ◽  
Yona Kassir

In all eukaryotes, the initiation of DNA replication is regulated by the ordered assembly of DNA/protein complexes on origins of DNA replication. In this report, we examine the role of Cdc6, a component of the prereplication complex, in the initiation of premeiotic DNA replication in budding yeast. We show that in the meiotic cycle, Cdc6 is required for DNA synthesis and sporulation. Moreover, similarly to the regulation in the mitotic cell cycle, Cdc6 is specifically degraded upon entry into the meiotic S phase. By contrast, chromatin-immunoprecipitation analysis reveals that the origin-bound Cdc6 is stable throughout the meiotic cycle. Preliminary evidence suggests that this protection reflects a change in chromatin structure that occurs in meiosis. Using the cdc28-degron allele, we show that depletion of Cdc28 leads to stabilization of Cdc6 in the mitotic cycle, but not in the meiotic cycle. We show physical association between Cdc6 and the meiosis-specific hCDK2 homolog Ime2. These results suggest that under meiotic conditions, Ime2, rather than Cdc28, regulates the stability of Cdc6. Chromatin-immunoprecipitation analysis reveals that similarly to the mitotic cell cycle, Mcm2 binds origins in G1 and meiotic S phases, and at the end of the second meiotic division, it is gradually removed from chromatin.


2004 ◽  
Vol 18 (4) ◽  
pp. 769-775 ◽  
Author(s):  
Stephen R. Hammes

Abstract Female fertility requires precise regulation of oocyte meiosis. Oocytes are arrested early in the meiotic cycle until just before ovulation, when ovarian factors trigger meiosis, or maturation, to continue. Although much has been learned about the late signaling events that accompany meiosis, until recently less was known about the early actions that initiate maturation. Studies using the well-characterized model of transcription-independent steroid-induced oocyte maturation in Xenopus laevis now show that steroid metabolism, classical steroid receptors, G protein-mediated signaling, and novel G protein-coupled receptors, all may play important roles in regulating meiosis. Furthermore, steroids appear to promote similar events in mammalian oocytes, implying a conserved mechanism of maturation in vertebrates. Interestingly, testosterone is a potent promoter of mammalian oocyte maturation, suggesting that androgen actions in the oocyte might be partially responsible for the polycystic ovarian phenotype and accompanying infertility associated with high androgen states such as polycystic ovarian syndrome or congenital adrenal hyperplasia. A detailed appreciation of the steroid-activated signaling pathways in frog and mammalian oocytes may therefore prove useful in understanding both normal and abnormal ovarian development in humans.


2003 ◽  
Vol 50 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Anna Dygas ◽  
Jolanta Barańska ◽  
Luigia Santella

We found that in starfish oocytes two different enzymes, phosphatidylserine synthase-1 (PSS1) and -2 (PSS2), which synthesize phosphatidylserine by a base-exchange reaction, are present. We studied phosphatidylserine synthesis in immature oocytes which still contain the nucleus (germinal vesicles) and in mature cells, in which the re-initiation of the meiotic cycle induced by the hormone 1-methyladenine led to structural changes in the endoplasmic reticulum, to the disappearance of the nuclear envelope and to the intermixing of the nucleoplasm with the cytoplasm. It was found that the levels of PSS1 and PSS2 transcripts were higher in immature and mature oocytes, respectively. The level of the expressed PSS2 protein, higher than that of PSS1, was not influenced by the maturation process, whereas the level of PSS1 protein was higher in immature than in mature oocytes. Serine incorporation into phosphatidylserine was enhanced in immature oocytes. The depletion of calcium stores by thapsigargin resulted in 50% lowering of phosphatidylserine synthesis. We suggest that changes in phosphatidylserine synthesis may be affected by the release of calcium stored in the nuclear envelope and in the endoplasmic reticulum, the membranes that undergo disintegration and fragmentation during meiosis. The reason for the greater synthesis of PS may be the higher level of expression of PSS1 in immature oocytes.


2003 ◽  
Vol 31 (1) ◽  
pp. 79-82 ◽  
Author(s):  
L. Santella ◽  
E. Ercolano ◽  
D. Lim ◽  
G.A. Nusco ◽  
F. Moccia

Starfish oocytes that are extracted from the ovaries are arrested at the prophase of the first meiotic division. At this stage of maturation, they are characterized by a large nucleus called the germinal vesicle. Meiosis resumption (maturation) can be induced in vitro by adding the hormone 1-methyladenine (1-MA) to the seawater in which the oocytes are suspended. Earlier work in our laboratory had detected Ca2+ increases in both the cytoplasm and the nucleus of the oocytes approx. 2 min after the 1-MA challenge. The nuclear Ca2+ increase was found to be essential for the continuation of the meiotic cycle, since the injection of bis-(o-aminophenoxy)ethane-N,N,N´,N´-tetra-acetic acid (BAPTA) into the nuclear compartment completely blocked the re-initiation of the cell cycle. We have recently confirmed, using confocal microscopy, that the cytoplasmic and nuclear Ca2+ pools are regulated independently and that the nuclear envelope in starfish oocytes is not freely permeated by the Ca2+ wave that sweeps across the nuclear region. Studies by others have shown that the sensitivity of the Ins(1,4,5)P3 (IP3) receptors (IP3Rs) to IP3 increases during oocyte maturation, so that they release progressively more calcium in response to the injection of IP3, as maturation proceeds. We have now shown that the increased sensitivity of the IP3Rs may depend on the activation of the cyclin-dependent kinase, MPF (M-phase-promoting factor) that occurs in the nucleus. MPF does not directly phosphorylate IP3Rs but phosphorylates instead the actin-binding protein actin depolymerization factor (ADF)/cofilin.


Sign in / Sign up

Export Citation Format

Share Document