scholarly journals Single-channel Ca2+ imaging implicates Aβ1–42 amyloid pores in Alzheimer’s disease pathology

2011 ◽  
Vol 195 (3) ◽  
pp. 515-524 ◽  
Author(s):  
Angelo Demuro ◽  
Martin Smith ◽  
Ian Parker

Oligomeric forms of Aβ peptides are implicated in Alzheimer’s disease (AD) and disrupt membrane integrity, leading to cytosolic calcium (Ca2+) elevation. Proposed mechanisms by which Aβ mediates its effects include lipid destabilization, activation of native membrane channels, and aggregation of Aβ into Ca2+-permeable pores. We distinguished between these using total internal reflection fluorescence (TIRF) microscopy to image Ca2+ influx in Xenopus laevis oocytes. Aβ1–42 oligomers evoked single-channel Ca2+ fluorescence transients (SCCaFTs), which resembled those from classical ion channels but which were not attributable to endogenous oocyte channels. SCCaFTs displayed widely variable open probabilities (Po) and stepwise transitions among multiple amplitude levels reminiscent of subconductance levels of ion channels. The proportion of high Po, large amplitude SCCaFTs grew with time, suggesting that continued oligomer aggregation results in the formation of highly toxic pores. We conclude that formation of intrinsic Ca2+-permeable membrane pores is a major pathological mechanism in AD and introduce TIRF imaging for massively parallel single-channel studies of the incorporation, assembly, and properties of amyloidogenic oligomers.

2019 ◽  
Vol 11 (474) ◽  
pp. eaau6550 ◽  
Author(s):  
Brendan P. Lucey ◽  
Austin McCullough ◽  
Eric C. Landsness ◽  
Cristina D. Toedebusch ◽  
Jennifer S. McLeland ◽  
...  

In Alzheimer’s disease (AD), deposition of insoluble amyloid-β (Aβ) is followed by intracellular aggregation of tau in the neocortex and subsequent neuronal cell loss, synaptic loss, brain atrophy, and cognitive impairment. By the time even the earliest clinical symptoms are detectable, Aβ accumulation is close to reaching its peak and neocortical tau pathology is frequently already present. The period in which AD pathology is accumulating in the absence of cognitive symptoms represents a clinically relevant time window for therapeutic intervention. Sleep is increasingly recognized as a potential marker for AD pathology and future risk of cognitive impairment. Previous studies in animal models and humans have associated decreased non–rapid eye movement (NREM) sleep slow wave activity (SWA) with Aβ deposition. In this study, we analyzed cognitive performance, brain imaging, and cerebrospinal fluid (CSF) AD biomarkers in participants enrolled in longitudinal studies of aging. In addition, we monitored their sleep using a single-channel electroencephalography (EEG) device worn on the forehead. After adjusting for multiple covariates such as age and sex, we found that NREM SWA showed an inverse relationship with AD pathology, particularly tauopathy, and that this association was most evident at the lowest frequencies of NREM SWA. Given that our study participants were predominantly cognitively normal, this suggested that changes in NREM SWA, especially at 1 to 2 Hz, might be able to discriminate tau pathology and cognitive impairment either before or at the earliest stages of symptomatic AD.


Nanoscale ◽  
2014 ◽  
Vol 6 (7) ◽  
pp. 3561-3565 ◽  
Author(s):  
Sung Sik Lee ◽  
Luke P. Lee

We utilize nanoplasmonic optical imaging as the noninvasive and label-free method in order to monitorin vitroamyloid fibrogenesis in real-time, which is considered as the primary pathological mechanism of Alzheimer's disease.


2012 ◽  
Vol 45 (3) ◽  
pp. 596-604 ◽  
Author(s):  
M. T. Gentile ◽  
M. G. Reccia ◽  
P. P. Sorrentino ◽  
E. Vitale ◽  
G. Sorrentino ◽  
...  

2018 ◽  
Vol 12 ◽  
Author(s):  
Laura Thei ◽  
Jennifer Imm ◽  
Eleni Kaisis ◽  
Mark L. Dallas ◽  
Talitha L. Kerrigan

2018 ◽  
Vol 18 (03) ◽  
pp. 1850028 ◽  
Author(s):  
DEVANSHI D. DAVE ◽  
BRAJESH KUMAR JHA

Under the widespread umbrella of dementia, Alzheimer’s disease is the most common form of dementia. Most of the aged people are suffering from Alzheimer’s disease around the world. The reasons for the same are not known in detail and thus various experimental and computational attempts need to be carried out. Calcium, being a second messenger has an immense role in transformation of information. This transformation takes place in the form of signaling in which several parameters play an active role. In present work, an attempt has been made to describe the effect of calcium signaling in nerve cells for Alzheimer’s disease. Here, parameters like advection diffusion and buffering are taken into consideration to visualize the effects of the same on cytosolic calcium concentration. This physiological process is modeled two dimensionally and solved analytically. Laplace and similarity transforms are employed to obtain the desired results. The results are simulated and graphically plotted using MATLAB. The known fact that the higher concentration of calcium has adverse effects on the cell which may result into progression of AD is considered as a lantern in enlightening the physiology of Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document