scholarly journals TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import

2017 ◽  
Vol 216 (9) ◽  
pp. 2843-2858 ◽  
Author(s):  
Wei Wang ◽  
Zhi-Jie Xia ◽  
Jean-Claude Farré ◽  
Suresh Subramani

Most proteins destined for the peroxisomal matrix depend on the peroxisomal targeting signals (PTSs), which require the PTS receptor PEX5, whose deficiency causes fatal human peroxisomal biogenesis disorders (PBDs). TRIM37 gene mutations cause muscle–liver–brain–eye (mulibrey) nanism. We found that TRIM37 localizes in peroxisomal membranes and ubiquitylates PEX5 at K464 by interacting with its C-terminal 51 amino acids (CT51), which is required for PTS protein import. PEX5 mutations (K464A or ΔCT51), or TRIM37 depletion or mutation, reduce PEX5 abundance by promoting its proteasomal degradation, thereby impairing its functions in cargo binding and PTS protein import in human cells. TRIM37 or PEX5 depletion induces apoptosis and enhances sensitivity to oxidative stress, underscoring the cellular requirement for functional peroxisomes. Therefore, TRIM37-mediated ubiquitylation stabilizes PEX5 and promotes peroxisomal matrix protein import, suggesting that mulibrey nanism is a new PBD.

2020 ◽  
Vol 21 (3) ◽  
pp. 867 ◽  
Author(s):  
Thomas Mastalski ◽  
Rebecca Brinkmeier ◽  
Harald W. Platta

The important physiologic role of peroxisomes is shown by the occurrence of peroxisomal biogenesis disorders (PBDs) in humans. This spectrum of autosomal recessive metabolic disorders is characterized by defective peroxisome assembly and impaired peroxisomal functions. PBDs are caused by mutations in the peroxisomal biogenesis factors, which are required for the correct compartmentalization of peroxisomal matrix enzymes. Recent work from patient cells that contain the Pex1(G843D) point mutant suggested that the inhibition of the lysosome, and therefore the block of pexophagy, was beneficial for peroxisomal function. The resulting working model proposed that Pex1 may not be essential for matrix protein import at all, but rather for the prevention of pexophagy. Thus, the observed matrix protein import defect would not be caused by a lack of Pex1 activity, but rather by enhanced removal of peroxisomal membranes via pexophagy. In the present study, we can show that the specific block of PEX1 deletion-induced pexophagy does not restore peroxisomal matrix protein import or the peroxisomal function in beta-oxidation in yeast. Therefore, we conclude that Pex1 is directly and essentially involved in peroxisomal matrix protein import, and that the PEX1 deletion-induced pexophagy is not responsible for the defect in peroxisomal function. In order to point out the conserved mechanism, we discuss our findings in the context of the working models of peroxisomal biogenesis and pexophagy in yeasts and mammals.


2014 ◽  
Vol 25 (17) ◽  
pp. 2634-2643 ◽  
Author(s):  
Danielle Hagstrom ◽  
Changle Ma ◽  
Soumi Guha-Polley ◽  
Suresh Subramani

Peroxisomal matrix protein import uses two peroxisomal targeting signals (PTSs). Most matrix proteins use the PTS1 pathway and its cargo receptor, Pex5. The PTS2 pathway is dependent on another receptor, Pex7, and its coreceptor, Pex20. We found that during the matrix protein import cycle, the stability and dynamics of Pex7 differ from those of Pex5 and Pex20. In Pichia pastoris, unlike Pex5 and Pex20, Pex7 is constitutively degraded in wild-type cells but is stabilized in pex mutants affecting matrix protein import. Degradation of Pex7 is more prevalent in cells grown in methanol, in which the PTS2 pathway is nonessential, in comparison with oleate, suggesting regulation of Pex7 turnover. Pex7 must shuttle into and out of peroxisomes before it is polyubiquitinated and degraded by the proteasome. The shuttling of Pex7, and consequently its degradation, is dependent on the receptor recycling pathways of Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. We also found that blocking the export of Pex20 from peroxisomes inhibits PTS1-mediated import, suggesting sharing of limited components in the export of PTS receptors/coreceptors. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20, exemplifying a novel interdependence of the PTS1 and PTS2 pathways.


2020 ◽  
Author(s):  
Andreas Schummer ◽  
Renate Maier ◽  
Shiran Gabay-Maskit ◽  
Tobias Hansen ◽  
Wignand W. D. Mühlhäuser ◽  
...  

AbstractThe peroxisomal biogenesis factor Pex14p is an essential component of the peroxisomal matrix protein import machinery. Together with Pex13p and Pex17p, it is part of the membrane-associated peroxisomal docking complex in yeast, facilitating the binding of cargo-loaded receptor proteins for translocation of cargo proteins into the peroxisome. Furthermore, Pex14p is part of peroxisomal import pores. The central role of Pex14p in peroxisomal matrix protein import processes renders it an obvious target for regulatory mechanisms such as protein phosphorylation. To explore this possibility, we examined the state of Pex14p phosphorylation in Saccharomyces cerevisiae. Phos-tag-SDS-PAGE of Pex14p affinity-purified from solubilized membranes revealed Pex14p as multi-phosphorylated protein. Using mass spectrometry, we identified 16 phosphorylation sites, with phosphorylation hot spots located in the N- and C-terminal regions of Pex14p. Analysis of phosphomimicking and nonphosphorylatable variants of Pex14p revealed a decreased import of GFP carrying a peroxisomal targeting signal type 1, indicating a functional relevance of Pex14p phosphorylation in peroxisomal matrix protein import. We show that this effect can be ascribed to the phosphomimicking mutation at serine 266 of Pex14p (Pex14p-S266D). We further screened the subcellular distribution of 23 native GFP-tagged peroxisomal matrix proteins by high-content fluorescence microscopy. Only Cit2p, the peroxisomal isoform of citrate synthase, was affected in the Pex14p-S266D mutant, showing increased cytosolic localization. Cit2p is part of the glyoxylate cycle, which is required for the production of essential carbohydrates when yeast is grown on non-fermentable carbon sources. Pex14p-S266 phosphosite mutants showed reversed growth phenotypes on oleic acid and ethanol with acetyl-CoA formed in peroxisomes and the cytosol, respectively. Our data point to the control of the peroxisomal import of Cit2p via the state of Pex14p phosphorylation at S266, which may help S. cerevisiae cells to rapidly adjust their carbohydrate metabolism according to the nutritional conditions.


1999 ◽  
Vol 112 (10) ◽  
pp. 1579-1590 ◽  
Author(s):  
C.C. Chang ◽  
S. South ◽  
D. Warren ◽  
J. Jones ◽  
A.B. Moser ◽  
...  

Zellweger syndrome and related disorders represent a group of lethal, genetically heterogeneous diseases. These peroxisome biogenesis disorders (PBDs) are characterized by defective peroxisomal matrix protein import and comprise at least 10 complementation groups. The genes defective in seven of these groups and more than 90% of PBD patients are now known. Here we examine the distribution of peroxisomal membrane proteins in fibroblasts from PBD patients representing the seven complementation groups for which the mutant gene is known. Peroxisomes were detected in all PBD cells, indicating that the ability to form a minimal peroxisomal structure is not blocked in these mutants. We also observed that peroxisome abundance was reduced fivefold in PBD cells that are defective in the PEX1, PEX5, PEX12, PEX6, PEX10, and PEX2 genes. These cell lines all display a defect in the import of proteins with the type-1 peroxisomal targeting signal (PTS1). In contrast, peroxisome abundance was unaffected in cells that are mutated in PEX7 and are defective only in the import of proteins with the type-2 peroxisomal targeting signal. Interestingly, a fivefold reduction in peroxisome abundance was also observed for cells lacking either of two PTS1-targeted peroxisomal beta-oxidation enzymes, acyl-CoA oxidase and 2-enoyl-CoA hydratase/D-3-hydroxyacyl-CoA dehydrogenase. These results indicate that reduced peroxisome abundance in PBD cells may be caused by their inability to import these PTS1-containing enzymes. Furthermore, the fact that peroxisome abundance is influenced by peroxisomal 105-oxidation activities suggests that there may be metabolic control of peroxisome abundance.


RSC Advances ◽  
2021 ◽  
Vol 11 (51) ◽  
pp. 32476-32493
Author(s):  
Anna-Roza Dimogkioka ◽  
Jamie Lees ◽  
Erik Lacko ◽  
Kostas Tokatlidis

Mitochondria have a central role in cellular metabolism; they are responsible for the biosynthesis of amino acids, lipids, iron–sulphur clusters and regulate apoptosis.


2020 ◽  
Author(s):  
Esther Nuebel ◽  
Jeffrey T Morgan ◽  
Sarah Fogarty ◽  
Jacob M Winter ◽  
Sandra Lettlova ◽  
...  

Peroxisomal Biogenesis Disorders (PBDs) are a class of inherited metabolic disorders with profound neurological and other phenotypes. The most severe PBDs are caused by mutations in peroxin genes, which result in nonfunctional peroxisomes typically through impaired protein import. In order to better understand the molecular causes of Zellweger Spectrum Disease (ZSD) - the most severe PBDs -, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that loss of peroxisomal import has no effect on peroxin mRNA expression or translational efficiency. Instead, peroxin proteins -still produced at high levels- aberrantly accumulate on the mitochondrial membrane, impairing respiration and ATP generation. Finally, we rescued mitochondrial function in fibroblasts derived from human patients with ZSD by overexpressing ATAD1, an AAA-ATPase that functions in mitochondrial quality control. These findings might provide a new focus of PBD therapies in supporting quality control pathways that protect mitochondrial function.


2004 ◽  
Vol 384 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Harald W. PLATTA ◽  
Wolfgang GIRZALSKY ◽  
Ralf ERDMANN

Proteins harbouring a peroxisomal targeting signal of type 1 (PTS1) are recognized by the import receptor Pex5p in the cytosol which directs them to a docking and translocation complex at the peroxisomal membrane. We demonstrate the ubiquitination of Pex5p in cells lacking components of the peroxisomal AAA (ATPases associated with various cellular activities) or Pex4p–Pex22p complexes of the peroxisomal protein import machinery and in cells affected in proteasomal degradation. In cells lacking components of the Pex4p–Pex22p complex, mono-ubiquitinated Pex5p represents the major modification, while in cells lacking components of the AAA complex polyubiquitinated forms are most prominent. Ubiquitination of Pex5p is shown to take place exclusively at the peroxisomal membrane after the docking step, and requires the presence of the RING-finger peroxin Pex10p. Mono- and poly-ubiquitination are demonstrated to depend on the ubiquitin-conjugating enzyme Ubc4p, suggesting that the ubiquitinated forms of Pex5p are targeted for proteasomal degradation. Accumulation of ubiquitinated Pex5p in proteasomal mutants demonstrates that the ubiquitination of Pex5p also takes place in strains which are not affected in peroxisomal biogenesis, indicating that the ubiquitination of Pex5p represents a genuine stage in the Pex5p receptor cycle.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25316 ◽  
Author(s):  
Nicola H. Gonzalez ◽  
Gregor Felsner ◽  
Frederic D. Schramm ◽  
Andreas Klingl ◽  
Uwe-G. Maier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document