scholarly journals Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers

2017 ◽  
Vol 216 (12) ◽  
pp. 4141-4151 ◽  
Author(s):  
Yu Chen ◽  
David C. Gershlick ◽  
Sang Yoon Park ◽  
Juan S. Bonifacino

Biosynthetic sorting of newly synthesized transmembrane cargos to endosomes and lysosomes is thought to occur at the TGN through recognition of sorting signals in the cytosolic tails of the cargos by adaptor proteins, leading to cargo packaging into coated vesicles destined for the endolysosomal system. Here we present evidence for a different mechanism in which two sets of endolysosomal proteins undergo early segregation to distinct domains of the Golgi complex by virtue of the proteins’ luminal and transmembrane domains. Proteins in one Golgi domain exit into predominantly vesicular carriers by interaction of sorting signals with adaptor proteins, but proteins in the other domain exit into predominantly tubular carriers shared with plasma membrane proteins, independently of signal–adaptor interactions. These findings demonstrate that sorting of endolysosomal proteins begins at an earlier stage and involves mechanisms that partly differ from those described by classical models.

2005 ◽  
Vol 16 (9) ◽  
pp. 4231-4242 ◽  
Author(s):  
Katy Janvier ◽  
Juan S. Bonifacino

The limiting membrane of the lysosome contains a group of transmembrane glycoproteins named lysosome-associated membrane proteins (Lamps). These proteins are targeted to lysosomes by virtue of tyrosine-based sorting signals in their cytosolic tails. Four adaptor protein (AP) complexes, AP-1, AP-2, AP-3, and AP-4, interact with such signals and are therefore candidates for mediating sorting of the Lamps to lysosomes. However, the role of these complexes and of the coat protein, clathrin, in sorting of the Lamps in vivo has either not been addressed or remains controversial. We have used RNA interference to show that AP-2 and clathrin—and to a lesser extent the other AP complexes—are required for efficient delivery of the Lamps to lysosomes. Because AP-2 is exclusively associated with plasma membrane clathrin coats, our observations imply that a significant population of Lamps traffic via the plasma membrane en route to lysosomes.


Author(s):  
Sofia Dimou ◽  
George Diallinas

Eukaryotic plasma membrane (PM) transporters face critical challenges that are not widely present in prokaryotes. The two most important issues are proper subcellular traffic and targeting to the PM, and regulated endocytosis in response to physiological, developmental or stress signals. Sorting of transporters from their site of synthesis, the Endoplasmic Reticulum (ER), to the PM has been long thought, but not formally shown, to occur via the conventional Golgi-dependent vesicular secretory pathway. Endocytosis of specific eukaryotic transporters has been studied more systematically and shown to involve ubiquitination, internalization, and sorting to early endosomes, followed by turnover in the MVB/lysosomes/vacuole system. In specific cases internalized transporters have been shown to recycle back to the PM. However, the mechanisms of transporter forward trafficking and turnover have been overturned recently through systematic work in the model fungus Aspergillus nidulans. In this review we present evidence that shows that transporter traffic to the PM takes place through Golgi-bypass and transporter endocytosis operates via a mechanism that is distinct from that of recycling membrane cargoes essential for fungal growth. We discuss these findings in relation to adaptation to challenges imposed by cell polarity in fungi as well as in other eukaryotes and provide a rationale why transporters and possibly other housekeeping membrane proteins ‘avoid’ routes of polar trafficking.


2018 ◽  
Vol 29 (22) ◽  
pp. 2709-2719 ◽  
Author(s):  
Latha Kallur Purushothaman ◽  
Christian Ungermann

Endosomes serve as a central sorting station of lipids and proteins that arrive via vesicular carrier from the plasma membrane and the Golgi complex. At the endosome, retromer complexes sort selected receptors and membrane proteins into tubules or vesicles that bud off the endosome. The mature endosome finally fuses with the lysosome. Retromer complexes consist of a cargo selection complex (CSC) and a membrane remodeling part (sorting nexin [SNX]-Bin/amphiphysin/Rvs [BAR], or Snx3 in yeast) and different assemblies of retromer mediate recycling of different cargoes. Due to this complexity, the exact order of events that results in carrier formation is not yet understood. Here, we reconstituted this process on giant unilamellar vesicles together with purified retromer complexes from yeast and selected cargoes. Our data reveal that the membrane remodeling activity of both Snx3 and the SNX-BAR complex is strongly reduced at low concentrations, which can be reactivated by CSC. At even lower concentrations, these complexes still associate with membranes, but only remodel membranes in the presence of their specific cargoes. Our data thus favor a simple model, where cargo functions as a specific trigger of retromer-mediated sorting on endosomes.


2009 ◽  
Vol 296 (3) ◽  
pp. F459-F469 ◽  
Author(s):  
Olga Vagin ◽  
Jeffrey A. Kraut ◽  
George Sachs

Polarized distribution of plasma membrane transporters and receptors in epithelia is essential for vectorial functions of epithelia. This polarity is maintained by sorting of membrane proteins into apical or basolateral transport containers in the trans-Golgi network and/or endosomes followed by their delivery to the appropriate plasma membrane domains. Sorting depends on the recognition of sorting signals in proteins by specific sorting machinery. In the present review, we summarize experimental evidence for and against the hypothesis that N-glycans attached to the membrane proteins can act as apical sorting signals. Furthermore, we discuss the roles of N-glycans in the apical sorting event per se and their contribution to folding and quality control of glycoproteins in the endoplasmic reticulum or retention of glycoproteins in the plasma membrane. Finally, we review existing hypotheses on the mechanism of apical sorting and discuss the potential roles of the lectins, VIP36 and galectin-3, as putative apical sorting receptors.


2013 ◽  
Vol 126 (23) ◽  
pp. 5344-5349 ◽  
Author(s):  
R. Quiroga ◽  
A. Trenchi ◽  
A. Gonzalez Montoro ◽  
J. Valdez Taubas ◽  
H. J. F. Maccioni

1994 ◽  
Vol 107 (4) ◽  
pp. 813-825 ◽  
Author(s):  
M.R. Shanks ◽  
D. Cassio ◽  
O. Lecoq ◽  
A.L. Hubbard

Studies of hepatocyte polarity, an important property of liver epithelial cells, have been hampered by the lack of valid in vitro models. We report here that a new polarized hepatoma-derived hybrid cell line, called WIF-B, has improved characteristics to those of its parent, WIF12-1. This latter line originated from the fusion of non-polarized rat hepatoma Fao cells with human fibroblasts (WI-38) and selection for a polarized phenotype. We generated the WIF-B line by growing WIF12-1 cells as unattached aggregates for three weeks and selecting for survivors. Karyotype analysis showed a broad chromosome pattern in the initial WIF-B population, but this pattern stabilized after a few passages. The growth and phenotypic properties of these cells were quite different from those of their polarized WIF12-1 parent. WIF-B cells attained a 4-fold higher maximal density in monolayer culture, survived at this density for > 5 days rather than 1 day, and exhibited two to three times more apical structures during this period (80 to 95%). We compared several parameters of liver differentiation in the WIF-B cells with those of a related hybrid clone, WIF12-E, which is extinguished for most liver-specific functions, and with the common hepatoma parent, Fao. By immunoblot analysis, the levels of expression of eight plasma membrane proteins were higher in the WIF-B cells than in either of the other two cell lines and ranged from 10 to 200% of those in vivo. Two plasma membrane proteins were not detected in WIF12-E cells. By immunofluorescence, the apical membrane proteins in WIF-B displayed different cellular localizations than in either of the other two cell lines. In WIF-B cells, apical proteins were confined to a plasma membrane region that we have identified as the apical domain by several criteria (Ihrke, G., Neufeld, E.D., Meads, T., Shanks, M.R., Cassio, D., Laurent, M., Schroer, T.A., Pagano, R. E. and Hubbard, A. L. J. Cell Biol., 123, 1761–1765). The same molecules were distributed over the entire plasma membrane of Fao and WIF12-E cells and also (for Fao cells) in intracellular punctate structures that did not colocalize with the majority of structures containing a secretory protein, albumin. Our results indicate that the WIF-B cells are more highly differentiated than any of their ancestors (Fao or WIF12-1 cells) and thus, are promising candidates for in vitro studies of hepatocyte polarity.


Cell ◽  
1987 ◽  
Vol 51 (6) ◽  
pp. 1039-1051 ◽  
Author(s):  
Lelio Orci ◽  
Mariella Ravazzola ◽  
Mylene Amherdt ◽  
Alain Perrelet ◽  
Sharon K. Powell ◽  
...  

2017 ◽  
Author(s):  
Peng Xu ◽  
Hannah M. Hankins ◽  
Chris Macdonald ◽  
Samuel J. Erlinger ◽  
Meredith N. Frazier ◽  
...  

ABSTRACTThe COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI mediates delivery of a budding yeast SNARE (Snc1) from early endosomes to the Golgi complex through recognition of a polyubiquitin sorting signal. Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through early endosomes back to the Golgi for reuse. Removal of ubiquitin from Snc1, or deletion of a β’-COP subunit propeller domain that binds K63-linked polyubiquitin, causes aberrant accumulation of Snc1 in early endosomes. Moreover, replacement of the β’-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles at early endosomes for Golgi delivery.


2005 ◽  
Vol 169 (4) ◽  
pp. 613-622 ◽  
Author(s):  
Christoph Jüschke ◽  
Andrea Wächter ◽  
Blanche Schwappach ◽  
Matthias Seedorf

Classic studies of temperature-sensitive secretory (sec) mutants have demonstrated that secreted and plasma membrane proteins follow a common SEC pathway via the endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles to the cell periphery. The yeast protein Ist2p, which is synthesized from a localized mRNA, travels from the ER to the plasma membrane via a novel route that operates independently of the formation of coat protein complex II–coated vesicles. In this study, we show that the COOH-terminal domain of Ist2p is necessary and sufficient to mediate SEC18-independent sorting when it is positioned at the COOH terminus of different integral membrane proteins and exposed to the cytoplasm. This domain functions as a dominant plasma membrane localization determinant that overrides other protein sorting signals. Based on these observations, we suggest a local synthesis of Ist2p at cortical ER sites, from where the protein is sorted by a novel mechanism to the plasma membrane.


2014 ◽  
Vol 25 (6) ◽  
pp. 866-878 ◽  
Author(s):  
Hirendrasinh B. Parmar ◽  
Christopher Barry ◽  
FuiBoon Kai ◽  
Roy Duncan

Although numerous linear motifs that direct protein trafficking within cells have been identified, there are few examples of linear sorting signals mediating directed export of membrane proteins from the Golgi complex to the plasma membrane. The reovirus fusion-associated small transmembrane proteins are simple, single-pass transmembrane proteins that traffic through the endoplasmic reticulum–Golgi pathway to the plasma membrane, where they induce cell–cell membrane fusion. Here we show that a membrane-proximal, polybasic motif (PBM) in the cytosolic tail of p14 is essential for efficient export of p14 from the Golgi complex to the plasma membrane. Extensive mutagenic analysis reveals that the number, but not the identity or position, of basic residues present in the PBM dictates p14 export from the Golgi complex, with a minimum of three basic residues required for efficient Golgi export. Results further indicate that the tribasic motif does not affect plasma membrane retention of p14. Furthermore, introduction of the tribasic motif into a Golgi-localized, chimeric ERGIC-53 protein directs export from the Golgi complex to the plasma membrane. The p14 PBM is the first example of an autonomous, tribasic signal required for Golgi export to the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document