scholarly journals CHANGES IN FINE STRUCTURE AND ACID PHOSPHATASE LOCALIZATION IN RAT THYROID CELLS FOLLOWING THYROTROPIN ADMINISTRATION

1965 ◽  
Vol 25 (3) ◽  
pp. 593-618 ◽  
Author(s):  
Bruce K. Wetzel ◽  
Samuel S. Spicer ◽  
Seymour H. Wollman

Shortly after the administration of 1/40 unit thyrotropin to rats, 24 hours post-hypophysectomy, the following sequence of changes has been observed within thyroid follicular epithelial cells: (1) the appearance of apical cell surface activity consisting of pseudopods projecting into the follicular lumen; (2) apparent phagocytic engulfment of colloid droplets lacking indications of acid phosphatase activity; (3) close association and probable fusion of newly formed colloid droplets and dense granules, the latter cytochemically positive for acid phosphatase activity; (4) the appearance of presumptive acid phosphatase activity within colloid droplets; and, (5) further colloid droplet changes, viz., basipetal migration and decrease in size, accompanied by an increase in density and in demonstrable acid phosphatase activity. These changes appeared to represent the resorption and degradation of follicular colloid. Comparable results were obtained using intact and more heavily stimulated animals. Colloid biosynthesis was tentatively visualized in these cells as a separate mechanism involving small vesicles prominent in the Golgi region and beneath the apical plasma membrane of some, but not all, thyroid follicular cells in each specimen.

1968 ◽  
Vol 37 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Nancy J. Lane

The neuronal perikarya of the grasshopper contain sudanophilic lipochondria which exhibit an affinity for vital dyes. These lipochondria are membrane-delimited and display acid phosphatase activity; hence they correspond to lysosomes. Unlike those of most vertebrates, these lysosomes also hydrolyze thiamine pyrophosphate and adenosine triphosphate. Like vertebrate lysosomal "dense bodies," they are electron-opaque and contain granular, vesicular, or lamellar material. Along with several types of smaller dense bodies, they are found in close spatial association with the Golgi apparatus. The Golgi complexes are frequently arranged in concentric configurations within which these dense bodies lie. Some of the smaller dense bodies often lie close to or in association with the periphery of dense multivesicular bodies. Further, bodies occur that display gradations in structure between these multivesicular bodies and the dense lysosomes. Acid phosphatase activity is present in the small as well as the larger dense bodies, in the multivesicular bodies, and in some of the Golgi saccules, associated vesicles, and fenestrated membranes; thiamine pyrophosphatase is found in both the dense bodies and parts of the Golgi complex. The close spatial association of these organelles, together with their enzymatic similarities, suggests the existence of a functional or developmental relationship between them.


1967 ◽  
Vol 15 (6) ◽  
pp. 311-334 ◽  
Author(s):  
B. K. WETZEL ◽  
S. S. SPICER ◽  
R. G. HORN

In rabbit heterophils, acid phosphatase activity occurs in primary (azurophil) granules which predominate in early cells and persist in mature cells and in tertiary granules which are seen only in mature cells. Alkaline phosphatase activity occurs in secondary granules which appear in intermediate heterophils and later predominate in mature cells. Acid phosphatase activity in heterophil Golgi zones coincides developmentally with the genesis of primary and, later, tertiary granules, whereas alkaline phosphatase in the Golgi complex coincides with secondary granulogenesis. In developing eosinophils, acid phosphatase reaction product occurs in Golgi elements, rims the spherical precursors of angular, mature granules and appears inconsistently within mature granules. Basophil myelocytes show acid phosphatase in Golgi elements but not in specific granules. Additional acid phosphatase reactive structures include: granules of mononuclear cells; phagocytic vacuoles in macrophages; autophagic vacuoles in maturing erythroid cells; small dense granules of platelets; dense bodies in lipocytes; and Golgi elements of mononuclear cells, macrophages, nucleated red cells, megakaryocytes and lipocytes. Localized deposits were absent in control specimens except for enzyme-independent nuclear staining in alkaline phosphatase preparations.


1975 ◽  
Vol 79 (3) ◽  
pp. 459-473 ◽  
Author(s):  
J. Dang ◽  
R. Miquelis ◽  
P. Bastiani ◽  
C. Simon

ABSTRACT In a previous study (Simon et al. 1971) a procedure for the preparation and separation of iodinated particles was described in the rat. The present paper deals with further investigations on the nature of these particles. Acid phosphatase and iodine are conjointly sedimentable and display a latency that is unmasked on dilution in a hypo-osmotic medium and under acidification to pH 5.0. These properties together with the sensitivity to Triton X-100 are best accounted for by assuming that iodinated particles of the thyroid gland are lysosomes. Part of the particulate iodine is soluble in n-butanol (BEI fraction). The existence of this BEI fraction demonstrates that hydrolysis of thyroglobulin occurs within the particles which thus exhibit an acid protease activity. Both the sedimentable iodine pool and acid phosphatase are increased under TSH stimulation and decreased after thyroxine treatment. In addition, the general activity of the iodinated particles is dependent on the daily iodine intake as shown by the variation of their iodine pool, acid phosphatase activity and BEI fraction with the iodine diet. It is concluded that iodinated particles of the thyroid gland are secondary lysosomes which participate in iodine secretion under TSH control. By in vitro treatment with destabilizing media or after in vivo treatment with thyroxine, iodinated particles exhibit a parallel loss of iodine and acid phosphatase. After a short-term TSH treatment in vivo, their iodine pool is more increased than their acid phosphatase activity. It is concluded that, at least in the normal rat thyroid, iodinated particles are essentially secondary lysosomes; true colloid droplets actually accumulate only after sufficient TSH stimulation. After ultracentrifugation, 3 main subpopulations are separated for which iodine and acid phosphatase patterns are superimposed. In addition, they all exhibit properties characteristic of secondary lysosomes. Finally, the presence of a fourth sedimentable iodinated fraction with a high turnover rate is postulated.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


Sign in / Sign up

Export Citation Format

Share Document