scholarly journals ARCHITECTURE AND NERVE SUPPLY OF MAMMALIAN SMOOTH MUSCLE TISSUE

1957 ◽  
Vol 3 (6) ◽  
pp. 867-878 ◽  
Author(s):  
Rudolf Caesar ◽  
George A. Edwards ◽  
Helmut Ruska

Smooth muscle tissue from mouse urinary bladder, uterus, and gall bladder has been studied by means of the electron microscope. The smooth muscle cells are distinctly and completely separated from each other by a cytolemma comparable to the sarcolemma of striated muscle. The tissue is thus cellular and not syncytial. With this evidence, supported by electron microscopy of other tissues, we question the existence of true syncytia in animal tissues. Individual cell membranes necessary for the electrophysiologic events exist in smooth muscle, and its nerve and conduction in a tissue such as uterus or bladder can occur at the cellular level as well as at the tissue area level. The smooth muscle cell contains myofilaments, nucleus, endoplasmic reticulum, mitochondria, Golgi complex, centrosome, and pinocytotic vesicles. These structures are described in some detail, and their probable interrelations and functions are discussed. The autonomic nerves innervating smooth muscle cells are composed of axons and lemnoblasts. The axon is suspended by the mesaxon formed by the infolded plasma membrane of the lemnoblast. The respective plasma membranes separate axon and lemnoblast from each other and from surrounding muscle cells. The axons of autonomic nerves never penetrate the plasma membrane of the muscle cell, but pass or intrude into muscle cell pockets, forming a contact between axonal plasma membrane and smooth muscle plasma membrane. The lemnoblast shows well developed endoplasmic reticulum with Palade granules, mitochondria, and a long, elliptical nucleus. The axon contains neurofilaments, mitochondria, and synaptic vesicles; the quantity of the latter two being significantly greater in the periphery of lemnoblasts and near axon-muscle contact regions. We regard the contact regions as the synapses between the autonomic nerves and the smooth muscle cells.

1969 ◽  
Vol 41 (2) ◽  
pp. 462-476 ◽  
Author(s):  
Peter M. Robinson

Acetylcholinesterase (AChE) has been detected on the plasma membrane of about 25% of the axons in the longitudinal smooth muscle tissue of guinea pig vas deferens. These axons are presumably cholinergic. No enzyme was detected in the remaining 75% of axons. These axons are presumably adrenergic. The plasma membrane of the Schwann cells associated with the cholinergic axons also stained for AChE. Some axon bundles contained only cholinergic or adrenergic axons while others contained both types of axon. When a cholinergic axon approached within 1100 A of a smooth muscle cell, there was a patch of AChE activity on the muscle membrane adjacent to the axon. It is suggested that these approaches are the points of effective transmission from cholinergic axons to smooth muscle cells. Butyrylcholinesterase activity was detected on the plasma membranes of all axons and smooth muscle cells in this tissue.


1987 ◽  
Vol 248 (1) ◽  
pp. 237-242 ◽  
Author(s):  
J P Slotte ◽  
E L Bierman

The spontaneous turnover of plasma-membrane sterols, as measured by their transfer to the endoplasmic reticulum, was measured in quiescent cultured human skin fibroblasts and monkey arterial smooth-muscle cells. The plasma-membrane sterol pool was pulse-labelled with trace amounts of either [3H]desmosterol or [3H]cholesterol. We then measured the enzymic conversion of [3H]desmosterol into [3H]cholesterol and of [3H]cholesterol into [3H]cholesteryl esters in intact cells. Depending on the probe used, markedly different transfer or conversion rates were found in these cells. In quiescent human skin fibroblasts, incubated in a serum-free medium, about 1.1% of the plasma-membrane [3H]desmosterol was converted into [3H]cholesterol/h, whereas in monkey arterial smooth-muscle cells the corresponding rate was 0.4%. Under similar experimental conditions, these cells esterified less than 0.02% (fibroblasts) and 0.12% (smooth-muscle cells) of the plasma-membrane [3H]cholesterol/h. The movement of sterols from the plasma membrane to the endoplasmic reticulum, as measured by the conversion of [3H]desmosterol into [3H]cholesterol was not blocked by colchicine, but was markedly enhanced by 3% (w/v) dimethyl sulphoxide. In all, these results indicate that plasma-membrane sterols of cultured cells are continuously transferred to the interior of the cell at a rate substantially higher than previously appreciated. This turnover of plasma-membrane sterol molecules took place even when there was no mass transfer of sterols into the cells.


1988 ◽  
Vol 12 ◽  
pp. 51-55 ◽  
Author(s):  
J. A. Eggermont ◽  
M. Vrolix ◽  
F. Wuytack ◽  
L. Raeymaekers ◽  
R. Casteels

1963 ◽  
Vol 16 (2) ◽  
pp. 361-377 ◽  
Author(s):  
J. C. Thaemert

The walls of the gastrointestinal tract and urinary bladder of rats were fixed in osmium tetroxide, embedded in methacrylate, and sectioned for electron microscopy. The examination of sections of smooth muscle tissue with the electron microscope reveals the presence of bundles of unmyelinated nerve fibers within the intercellular spaces. In addition, vesiculated nerve processes, bounded on their outer surfaces by delicate plasma membranes and typically containing varying quantities of synaptic vesicles and mitochondria, make intimate contact with the surface of smooth muscle cells. These nerve processes are similar in structure and disposition to nerve endings previously described in skeletal muscle, in the central nervous system, in peripheral ganglia, in receptors, and in glands. It is concluded that the relationships existing between vesiculated nerve processes and the surface of smooth muscle cells constitute neuromuscular junctions. Profiles of protrusions of smooth muscle cells are often seen protruding into the intercellular spaces. Here they occur singly or in groups, originating from one or more cells. Because of the plane of section the protrusions may sometimes appear as individual entities between the muscle cells. In such cases care must be exercised in their identification because they have characteristics similar to sectioned nerve processes which also occur in the intercellular spaces.


1988 ◽  
Vol 12 (Supplement) ◽  
pp. 51-55 ◽  
Author(s):  
J. A. Eggermont ◽  
M. Vrolix ◽  
F. Wuytack ◽  
L. Raeymaekers ◽  
R. Casteels

1977 ◽  
Vol 75 (1) ◽  
pp. 166-184 ◽  
Author(s):  
S Fowler ◽  
H Shio ◽  
H Wolinsky

A comparative biochemical and morphological study was made of calf aortic smooth muscle cells found in situ and grown in vitro under various conditions. Striking alterations in enzyme contents, physical properties, and morphological appearances of lysosomes, endoplasmic reticulum, plasma membranes and, to a lesser extent, mitochondria were observed upon culturing of calf aortic smooth muscle cells. These changes first appeared in cells growing out of tissue explants. They developed further upon subculturing of the cells and depended greatly on the culture conditions used. The alterations included increases in specific activities of some 5- to 25-fold of four acid hydrolases, an average ninefold increase in 5' -nucleotidase, sevenfold increase in cytochrome oxidase, and fourfold increase in neutral α-glucosidase in subcultured smooth muscle cells compared to aortic cells in situ. Cell fractionation studies showed significant shifts in the equilibrium densities of plasma membranes, microsomes, and lysosomes, but not of mitochondria, in smooth muscle cells growing out from explants and in subcultured cells, compared to cells isolated from intact aortas. Although the cells grown in vitro exhibited typical phenotypic features of smooth muscle cells such as abundant myofilaments and surface vesicles, alterations in the morphological appearance of the endoplasmic reticulum, Golgi apparatus, and, especially, lysosomes were observed. These results demonstrate significant differences in specific cellular characteristics and functions of aortic smooth muscle cells grown in vitro compared to aortic cells in situ.


2007 ◽  
Vol 292 (5) ◽  
pp. G1315-G1322 ◽  
Author(s):  
Takashi Ohama ◽  
Masatoshi Hori ◽  
Eiichi Momotani ◽  
Margaret Elorza ◽  
William T. Gerthoffer ◽  
...  

Intestinal inflammation causes hyperplasia of smooth muscle that leads to thickening of the smooth muscle layer, resulting in dysmotility. IL-1β is a proinflammatory cytokine that plays a central role in intestinal inflammation. In this study, to evaluate the effect of IL-1β on proliferation of ileal smooth muscle cells in vivo, we utilized an organ culture system. When rat ileal smooth muscle tissue was cultured under serum-free conditions for 3 days, most smooth muscle cells maintained their arrangement and kept their contractile phenotype. When 10% FBS was added, an increased number of smooth muscle cells per unit area was observed. Moreover, immunohistochemical staining for PCNA demonstrated that FBS induced proliferation of smooth muscle cells. IL-1β inhibited the proliferative effect of FBS. Furthermore, IL-1β upregulated inducible nitric oxide (NO) synthase and cyclooxygenase-2 mRNA and protein and thus stimulated NO and PGE2productions. Moreover, exogenously applied NO and PGE2inhibited the increase of bromodeoxyuridine-positive cells stimulated with FBS. Immunostaining revealed that the majority of cyclooxygenase-2 and inducible NO synthase was located in the dense network of macrophages resident in the muscularis, which were immunoreactive to ED2. Based on these findings, IL-1β acts as an anti-proliferative mediator, which acts indirectly through the production of PGE2and NO from resident macrophage within ileal smooth muscle tissue.


1990 ◽  
Vol 63 (02) ◽  
pp. 291-297 ◽  
Author(s):  
Herm-Jan M Brinkman ◽  
Marijke F van Buul-Worteiboer ◽  
Jan A van Mourik

SummaryWe observed that the growth of human umbilical arterysmooth muscle cells was inhibited by the phospholipase A2 inhibitors p-bromophenacylbromide and mepacrine. Thesefindings suggest that fatty acid metabolism might be integrated in the control mechanism of vascular smooth muscle cell proliferation. To identify eicosanoids possibly involved in this process, we studied both the metabolism of arachidonic acid of these cells in more detail and the effect of certain arachidonic acid metabolites on smooth muscle cells growth. We found no evidence for the conversion of arachidonic acid via the lipoxygenase pathway. In contrast, arachidonic acid was rapidly converted via the cyclooxy-genase pathway. The following metabolites were identified: prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-k-PGF1α), prostaglandin F2α (PGF2α), 12-hydroxyheptadecatrienoic acid (12-HHT) and 11-hydroxyeicosatetetraenoic acid (11-HETE). PGE2 was the major metabolite detected. Arachidonic acid metabolites were only found in the culture medium, not in the cell. After synthesis, 11-HETE was cleared from the culture medium. We have previously reported that PGE2 inhibits the serum-induced [3H]-thymidine incorporation of growth-arrested human umbilical artery smooth muscle cells. Here we show that also 11-HETEexerts this inhibitory property. Thus, our data suggeststhat human umbilical artery smooth muscle cells convert arachidonic acid only via the cyclooxygenase pathway. Certain metabolites produced by this pathway, including PGE2 and 11-HETE, may inhibit vascular smooth muscle cell proliferation.


2019 ◽  
Vol 33 (9) ◽  
pp. 9785-9796 ◽  
Author(s):  
Takuro Numaga‐Tomita ◽  
Tsukasa Shimauchi ◽  
Sayaka Oda ◽  
Tomohiro Tanaka ◽  
Kazuhiro Nishiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document