scholarly journals FINE STRUCTURE OF LIPID-DEPLETED MITOCHONDRIA

1967 ◽  
Vol 32 (1) ◽  
pp. 193-208 ◽  
Author(s):  
Sidney Fleischer ◽  
Becca Fleischer ◽  
Walther Stoeckenius

The fine structure of mitochondria and submitochondrial vesicles depleted of their lipid by extraction with aqueous acetone was studied. Thin sections of mitochondrial membranes depleted of more than 95% of their lipid retained the unit membrane structure. Densitometer tracings of the electron micrographs showed that the unit membrane of extracted mitochondria was, on the average, wider than that of unextracted controls and showed a greater variation in width. The outer membrane was lost in mitochondria from which 80–95% of the lipids was extracted. Inner membrane particles were present on submitochondrial vesicles depleted of up to 85% of their lipids. However, when more than 95% of the lipid was removed, few, if any, particles remained attached to the membranes but many particles were found unattached in the background. When lipid was restored to lipid-deficient preparations, the mitochondrial membranes were found to be devoid of inner membrane particles but were fully active with respect to succinate-cytochrome c reductase activity.

The study, in thin sections, of the specific morphology of mitochondria in different plant and animal cells has confirmed the view that, in spite of a wide polymorphism in gross structure, the organelle is nevertheless built according to the same fundamental pattern, which was first described by Palade (1953) and by Sjöstrand (1953). As seen in most electron micrographs of sectioned fixed cells, mitochondria appear to consist of a double membrane system and of two distinct compartments; an outer compartment, varying in relative importance, which comprises the space between the two membranes of the mitochondrial envelope and the intracristal spaces, and an inner compartment or matrix which is separated from the cytoplasm by the two mitochondrial membranes (plate 14, a ). Many aspects of recent research on mitochondria deal with the correlations between mitochondrial form and function, and with changes occurring in mitochondria during cell differentiation, hormone-induced alteration or during respiratory adaptation. There is no place here to mention all this interesting matter and I shall restrict my subject to a few recent additions or corrections which have been brought to the basic and already classical scheme of the mitochondrion. But, in this restricted study of the generalized mitochondrion, I shall not confine myself to a mere description of sectioned fixed material, but also consider how different but related techniques have increased our understanding of the fine structure of the mitochondrion, and discuss the implications of this fine structure in relation to our concept of the living organelle. Osmotic swelling and post-mortem alterations of subcellular organelles are important sources of misinterpretation of ultrastructure. Sample preparation by very quick freezing and substitution (Malhotra 1966) greatly improves the conservation of mitochondria and, by using this technique immediately after the animal has been killed, it has been shown that the two mitochondrial membranes are closely applied to one another: this confirms the view that, in vivo , the outer compartment has only a potential existence.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Roberta M. Bruck

An unusual structure in the cochlea is the spiral limbus; this periosteal tissue consists of stellate fibroblasts and collagenous fibers embedded in a translucent ground substance. The collagenous fibers are arranged in vertical columns (the auditory teeth of Haschke). Between the auditory teeth are interdental furrows in which the interdental cells are situated. These epithelial cells supposedly secrete the tectorial membrane.The fine structure of interdental cells in the rat was reported by Iurato (1962). Since the mouse appears to be different, a description of the fine structure of mouse interdental cells' is presented. Young adult C57BL/6J mice were perfused intervascularly with 1% paraformaldehyde/ 1.25% glutaraldehyde in .1M phosphate buffer (pH7.2-7.4). Intact cochlea were decalcified in .1M EDTA by the method of Baird (1967), postosmicated, dehydrated, and embedded in Araldite. Thin sections stained with uranyl acetate and lead citrate were examined in a Phillips EM-200 electron microscope.


Author(s):  
R. P. Becker ◽  
J. J. Wolosewick ◽  
J. Ross-Stanton

Methodology has been introduced recently which allows transmission and scanning electron microscopy of cell fine structure in semi-thin sections unencumbered by an embedding medium. Images obtained from these “resinless” sections show a three-dimensional lattice of microtrabeculfee contiguous with cytoskeletal structures and membrane-bounded cell organelles. Visualization of these structures, especially of the matiiDra-nous components, can be facilitated by employing tannic acid in the fixation step and dessicator drying, as reported here.Albino rats were fixed by vascular perfusion with 2% glutaraldehyde or 1.5% depolymerized paraformaldehyde plus 2.5% glutaraldehyde in 0.1M sodium cacodylate (pH 7.4). Tissues were removed and minced in the fixative and stored overnight in fixative containing 4% tannic acid. The tissues were rinsed in buffer (0.2M cacodylate), exposed to 1% buffered osmium tetroxide, dehydrated in ethyl alcohol, and embedded in pure polyethylene glycol-6000 (PEG). Sections were cut on glass knives with a Sorvall MT-1 microtome and mounted onto poly-L-lysine, formvar-carbon coated grids while submerged in a solution of 95% ethanol containing 5% PEG.


2001 ◽  
Vol 114 (24) ◽  
pp. 4637-4650 ◽  
Author(s):  
Lewis G. Tilney ◽  
Omar S. Harb ◽  
Patricia S. Connelly ◽  
Camenzind G. Robinson ◽  
Craig R. Roy

Within five minutes of macrophage infection by Legionella pneumophila, the bacterium responsible for Legionnaires’ disease, elements of the rough endoplasmic reticulum (RER) and mitochondria attach to the surface of the bacteria-enclosed phagosome. Connecting these abutting membranes are tiny hairs, which are frequently periodic like the rungs of a ladder. These connections are stable and of high affinity - phagosomes from infected macrophages remain connected to the ER and mitochondria (as they were in situ) even after infected macrophages are homogenized. Thin sections through the plasma and phagosomal membranes show that the phagosomal membrane is thicker (72±2 Å) than the ER and mitochondrial membranes (60±2 Å), presumably owing to the lack of cholesterol, sphingolipids and glycolipids in the ER. Interestingly, within 15 minutes of infection, the phagosomal membrane changes thickness to resemble that of the attached ER vesicles. Only later (e.g. after six hours) does the ER-phagosome association become less frequent. Instead ribosomes stud the former phagosomal membrane and L. pneumophila reside directly in the rough ER. Examination of phagosomes of various L. pneumophila mutants suggests that this membrane conversion is a four-stage process used by L. pneumophila to establish itself in the RER and to survive intracellularly. But what is particularly interesting is that L. pneumophila is exploiting a poorly characterized naturally occuring cellular process.


1963 ◽  
Vol 18 (3) ◽  
pp. 681-689 ◽  
Author(s):  
A. D. Brown ◽  
C. D. Shorey

The cell envelope of Halobacterium halobium was seen in thin sections of permanganate-fixed cells to consist of one membrane. This membrane appeared mostly as a unit membrane but in a few preparations it resembled a 5-layered compound membrane. The cell envelope of Halobacterium salinarium at high resolution was always seen as a 5-layered structure different in appearance from the apparent compound membrane of H. halobium. The "envelopes" which were isolated in 12.5 per cent NaCl from each organism were indistinguishable from each other in the electron microscope and comprised, in each case, a single unit membrane with an over-all thickness of about 110 A. Some chemical analyses were made of isolated membranes after freeing them from salt by precipitating and washing with trichloroacetic acid. Such precipitated membranes consisted predominantly of protein, with little carbohydrate and no peptido-aminopolysaccharide (mucopeptide). Sectioned whole cells of H. halobium contained intracellular electron-opaque structures of unknown function.


1963 ◽  
Vol 17 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Audrey M. Glauert ◽  
Mary R. Daniel ◽  
J. A. Lucy ◽  
J. T. Dingle

Rabbit erythrocytes have been haemolysed by treatment with vitamin A alcohol and the sequence of changes in the fine structure of the cells during lysis has been investigated by phase contrast microscopy of intact cells and electron microscopy of thin sections. The initial effect of the vitamin, which occurs within 1 minute, is the production of cells of bizarre appearance which have a greatly increased surface area relative to untreated cells. Large indentations appear in the surfaces of the cells, and vacuoles are formed from the indentations by a process that resembles micropinocytosis. The cells then become spherical and loss of haemoglobin begins as breaks appear in the membranes of some cells; finally, ghosts are produced that are no longer spherical but still contain numerous vacuoles. These observations support the thesis that one site of action of vitamin A is at lipoprotein membranes.


1973 ◽  
Vol 19 (3) ◽  
pp. 309-313 ◽  
Author(s):  
Judith F. M. Hoeniger ◽  
H.-D. Tauschel ◽  
J. L. Stokes

Sphaerotilus natans developed sheathed filaments in stationary liquid cultures and motile swarm cells in shaken ones. Electron microscopy of negatively stained preparations and thin sections showed that the sheath consists of fibrils. When the filaments were grown in broth with glucose added, the sheath was much thicker and the cells were packed with granules of poly-β-hydroxybutyrate.Swarm cells possess a subpolar tuft of 10 to 30 flagella and a polar organelle which is usually inserted in a lateral position and believed to be ribbon-shaped. The polar organelle consists of an inner layer joined by spokes to an accentuated plasma membrane. The flagellar hook terminates in a basal disk, consisting of two rings, which is connected by a central rod to a second basal disk.


1987 ◽  
Vol 252 (5) ◽  
pp. H985-H989
Author(s):  
W. Rouslin

The rate of irreversible loss of mitochondrial phosphorylating respiratory function with NAD-linked substrates during zero flow myocardial autolysis at 37 degrees C was gradual and relatively linear with time, progressing at about 1% of the control activity per minute. State 3 respiratory rates and initial rates of inner membrane potential development dropped off in close parallel with one another as well as with NADH-coenzyme Q (CoQ) reductase activity, suggesting that oxygen uptake as well as membrane potential development were rate limited by the increasing impairment of electron flow through complex I. Although the initial rate of membrane potential development dropped off gradually, the time course for the loss of the ability to ultimately develop and hold a full potential was slower still, there being only a moderate impairment of this ability at 80 min of autolysis. This sustained ability to develop and hold a membrane potential after more than 1 h of autolysis suggested that inner membrane leakiness contributed little or not at all to the functional impairment observed. The irreversible loss of mitochondrial inner membrane competence emerged in these studies as a relatively late development in the sequence of cellular alterations which characterize the myocardial ischemic process.


Sign in / Sign up

Export Citation Format

Share Document