scholarly journals NEGATIVE STAINING AND ADENOSINE TRIPHOSPHATASE ACTIVITY OF ANNULATE LAMELLAE OF NEWT OOCYTES

1969 ◽  
Vol 42 (2) ◽  
pp. 519-533 ◽  
Author(s):  
Ulrich Scheer ◽  
Werner W. Franke

Semi-isolated annulate lamellae were prepared from single newt oocytes (Triturus alpestris) by a modified Callan-Tomlin technique. Such preparations were examined with the electron microscope, and the negative staining appearance of the annulate lamellae is described. The annulate lamellae can be detected either adhering to the nuclear envelope or being detached from it. Sometimes they are observed to be connected with slender tubular-like structures interpreted as parts of the endoplasmic reticulum. The results obtained from negative staining are combined with those from sections. Especially, the structural data on the annulate lamellae and the nuclear envelope of the very same cell were compared. Evidence is presented that in the oocytes studied the two kinds of porous cisternae, namely annulate lamellae and nuclear envelope, are markedly distinguished in that the annulate lamellae exhibit a much higher pore frequency (generally about twice that found for the corresponding nuclear envelope) and have also a relative pore area occupying as much as 32% to 55% of the cisternal surface (compared with 13% to 22% in the nuclear envelopes). The pore diameter and all other ultrastructural details of the pore complexes, however, are equivalent in both kinds of porous cisternae. Like the annuli of the nuclear pore complexes of various animal and plant cells, the annuli of the annulate lamellae pores reveal also an eightfold symmetry of their subunits in negatively stained as well as in sectioned material. Furthermore, the annulate lamellae are shown to be a site of activity of the Mg-Na-K-stimulated ATPase.

1978 ◽  
Vol 34 (1) ◽  
pp. 81-90
Author(s):  
J.R. Harris

A procedure is described for the preparation of avian erythrocyte nuclear envelope ghosts which remain enclosed by the ellipsoid plasma membrane. Haemoglobin-free nucleated chicken erythrocyte ghosts are treated in a low ionic strength buffer plus heparin which brings about decondensation of the chromatin. This is followed by solubilization of the chromatin by digestion with pancreatic deoxyribonuclease-1. When studied by light microscopy using either phase-contrast or Nomarski interference optics, the ellipsoid plasma membrane is clearly seen to remain with the collapsed nuclear envelope trapped inside. This interpretation is supported by negative-staining electron microscopy using ammonium molybdate, which in addition reveals the presence of the nuclear pore complexes. The suggestion is advanced that structural protection is provided for the fragile nuclear envelope system by the surrounding plasma membrane, which might account for the final nuclear envelope being in the form of relatively intact ghosts with well defined nuclear pore complexes. The nuclear envelope is highly fragmented when the plasma membrane is absent, the nuclear pore complexes showing appreciable breakdown. Thin sectioning supports the results of negative staining and in addition shows the nuclear envelope retained within the plasma membrane to be composed of both inner and outer nuclear membranes, but the nuclear pore complexes are not clearly defined.


1996 ◽  
Vol 109 (7) ◽  
pp. 1813-1824 ◽  
Author(s):  
A. Ewald ◽  
U. Kossner ◽  
U. Scheer ◽  
M.C. Dabauvalle

Pore complexes are not confined to the nuclear envelope but can also be found in the cytoplasm of numerous cell types in the form of annulate lamellae (AL). We have induced formation of AL by exposure of rat cells (line RV) to sublethal doses of the antimitotic drug vinblastine sulfate, and compared the distribution of several nuclear pore complex proteins (nucleoporins) in the nuclear envelope and AL by immunocytochemistry, cytochemical lectin binding studies and immunoblot analyses of nuclear and AL-enriched fractions. All the antibodies used yielded punctate nuclear surface staining in immunofluorescence microscopy which is characteristic for nuclear pore complex components. When we applied antibodies against the nucleoporin p62, AL were visualized as numerous cytoplasmic dot-like structures. Immunogold electron microscopy confirmed the correspondence of the cytoplasmic bodies with stacks of AL. Antibodies to constituents of the cytoplasmic (nup180) and nucleoplasmic (nup153) filaments extending from both sides of nuclear pore complexes also stained the AL, indicating that pore complexes are intrinsically asymmetric assemblies independent of their specific intracellular topology. By contrast, AL were negative with five different antibodies against the transmembrane nuclear pore glycoprotein gp210 and the lectin concanavalin A (ConA) known to bind to the oligosaccharide side chains of gp210. Similarly, there was no staining of the AL with antibodies to the other nuclear pore membrane protein so far known in higher eukaryotes, POM121. Immunoblot analyses confirmed the presence of p62, nup180 and nup153 in both the nuclear and AL fractions and the absence of gp210 and POM121 from AL. Our results do not support the generally held view that gp210 and POM121 function in anchoring the pore complex scaffold to the pore membrane. Rather, they point to a role for these proteins in transport processes through the nuclear pore complexes. Since AL are not involved in nucleocytoplasmic transport processes they may lack components of the transport machinery.


Author(s):  
Brian Burke

The nuclear envelope is a complex membrane structure that forms the boundary of the nuclear compartment in eukaryotes. It regulates the passage of macromolecules between the two compartments and may be important for organizing interphase chromosome architecture. In interphase animal cells it forms a remarkably stable structure consisting of a double membrane ouerlying a protein meshwork or lamina and penetrated by nuclear pore complexes. The latter form the channels for nucleocytoplasmic exchange of macromolecules, At the onset of mitosis, however, it rapidly disassembles, the membranes fragment to yield small vesicles and the lamina, which is composed of predominantly three polypeptides, lamins R, B and C (MW approx. 74, 68 and 65 kDa respectiuely), breaks down. Lamins B and C are dispersed as monomers throughout the mitotic cytoplasm, while lamin B remains associated with the nuclear membrane vesicles.


2009 ◽  
Vol 20 (2) ◽  
pp. 616-630 ◽  
Author(s):  
Hui-Lin Liu ◽  
Colin P.C. De Souza ◽  
Aysha H. Osmani ◽  
Stephen A. Osmani

In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.


1997 ◽  
Vol 136 (6) ◽  
pp. 1185-1199 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.


2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Christopher Ptak ◽  
Natasha O. Saik ◽  
Ashwini Premashankar ◽  
Diego L. Lapetina ◽  
John D. Aitchison ◽  
...  

In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin–nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 509-519 ◽  
Author(s):  
Petros Batsios ◽  
Ralph Gräf ◽  
Michael P. Koonce ◽  
Denis A. Larochelle ◽  
Irene Meyer

The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export. The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins and it interacts with Sun1, as well as with the LEM/HeH-family protein Src1. Sun1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun1 usually forms a so-called LINC complex. Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector. However, both of these lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and the appropriate spindle formation. Moreover, centrosome insertion is involved in permeabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors. Our recent progress in identifying key molecular players at the nuclear envelope of Dictyostelium promises further insights into the mechanisms of nuclear envelope dynamics.


Author(s):  
Naomi Hachiya ◽  
Marta Sochocka ◽  
Anna Brzecka ◽  
Takuto Shimizu ◽  
Kazimierz Gąsiorowski ◽  
...  

Abstract Transport of proteins, transcription factors, and other signaling molecules between the nucleus and cytoplasm is necessary for signal transduction. The study of these transport phenomena is particularly challenging in neurons because of their highly polarized structure. The bidirectional exchange of molecular cargoes across the nuclear envelope (NE) occurs through nuclear pore complexes (NPCs), which are aqueous channels embedded in the nuclear envelope. The NE and NPCs regulate nuclear transport but are also emerging as relevant regulators of chromatin organization and gene expression. The alterations in nuclear transport are regularly identified in affected neurons associated with human neurodegenerative diseases. This review presents insights into the roles played by nuclear transport defects in neurodegenerative disease, focusing primarily on NE proteins and NPCs. The subcellular mislocalization of proteins might be a very desirable means of therapeutic intervention in neurodegenerative disorders.


2001 ◽  
Vol 154 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Nathalie Daigle ◽  
Joël Beaudouin ◽  
Lisa Hartnell ◽  
Gabriela Imreh ◽  
Einar Hallberg ◽  
...  

The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121–green fluorescent protein (GFP) and GFP-Nup153, and GFP–lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, strongly suggesting mechanical connections which form an NPC network. The nuclear lamina exhibited identical movements. NPC turnover measured by fluorescence recovery after photobleaching of POM121 was less than once per cell cycle. Nup153 association with NPCs was dynamic and turnover of this nucleoporin was three orders of magnitude faster. Overexpression of both nucleoporins induced the formation of annulate lamellae (AL) in the endoplasmic reticulum (ER). Turnover of AL pore complexes was much higher than in the NE (once every 2.5 min). During mitosis, POM121 and Nup153 were completely dispersed and mobile in the ER (POM121) or cytosol (Nup153) in metaphase, and rapidly redistributed to an immobilized pool around chromatin in late anaphase. Assembly and immobilization of both nucleoporins occurred before detectable recruitment of lamin B1, which is thus unlikely to mediate initiation of NPC assembly at the end of mitosis.


2009 ◽  
Vol 185 (3) ◽  
pp. 377-379 ◽  
Author(s):  
Michael Rexach

All nucleocytoplasmic traffic of macromolecules occurs through nuclear pore complexes (NPCs), which function as stents in the nuclear envelope to keep nuclear pores open but gated. Three studies in this issue (Flemming, D., P. Sarges, P. Stelter, A. Hellwig, B. Böttcher, and E. Hurt. 2009. J. Cell Biol. 185:387–395; Makio, T., L.H. Stanton, C.-C. Lin, D.S. Goldfarb, K. Weis, and R.W. Wozniak. 2009. J. Cell Biol. 185:459–491; Onishchenko, E., L.H. Stanton, A.S. Madrid, T. Kieselbach, and K. Weis. 2009. J. Cell Biol. 185:475–491) further our understanding of the NPC assembly process by reporting what happens when the supply lines of key proteins that provide a foundation for building these marvelous supramolecular structures are disrupted.


Sign in / Sign up

Export Citation Format

Share Document