scholarly journals Dynamics of Spindle Formation and Its Inhibition by Chemicals

1959 ◽  
Vol 6 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Edwin W. Taylor

The formation of the mitotic spindle of the newt cell in tissue culture has been studied, using polarized light. The rate of formation was measured and it was shown that the spindle increased in length at a constant rate until the maximum was attained. During metaphase the spindle shortened to about 50 to 60 per cent of its original length, reaching a minimum just before anaphase. No birefringence was detected in late anaphase in the spindle region after the chromosome masses had separated. The effects of certain compounds which are believed to inhibit protein synthesis were investigated. Chloramphenicol added in early prophase prevented the formation of a spindle of normal length. The possible relation of chloramphenicol to the synthesis of spindle proteins is discussed.

1998 ◽  
Vol 111 (19) ◽  
pp. 2897-2909 ◽  
Author(s):  
E. Logarinho ◽  
C.E. Sunkel

The MPM2 antibody is a valuable tool for studying the regulation of mitotic events since it specifically recognises a subset of mitosis-specific phosphoproteins. Some MPM2 epitopes have been shown to be phosphorylated by p34(cdc2). However, recent results suggest that the newly emerging family of polo-like kinases (Plks) may also act as MPM2 kinases. In this study, we present evidence suggesting that the Drosophila POLO protein is required for the phosphorylation of MPM2 reactive epitopes. POLO displays a dynamic localisation pattern during mitosis, which parallels that of the MPM2 phosphoepitopes, since it is found in the centrosome and centromere from early prophase until late anaphase, the microtubule-overlapping region during anaphase, and the region on either side of the midbody during telophase. Centromere localisation is not dependent upon microtubules since it is retained in colchicine-arrested cells and is present in isolated chromosomes. Furthermore, the level of MPM2 immunoreactivity is directly correlated to the severity of the polo mutant alleles. In cells carrying a hypomorphic allele, the centrosomes of abnormal cells are small and fail to efficiently recruit MPM2 epitopes. In neuroblasts homozygous for a severe loss-of-function allele, the mitotic index is low and the MPM2 labelling is severely reduced or absent. Finally, rephosphorylation of MPM2 epitopes in detergent-extracted Schneider cells requires either POLO stably bound to the cytoskeletons or POLO present in soluble extracts. These results suggest that POLO is required for the phosphorylation of MPM2 epitopes in Drosophila, at the centrosomes, centromeres and the mitotic spindle, and thus might be involved in co-ordinating the mitotic changes of cellular architecture with the activity of the maturation promoting factor.


1976 ◽  
Vol 81 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. Radvila ◽  
R. Roost ◽  
H. Bürgi ◽  
H. Kohler ◽  
H. Studer

ABSTRACT Lithium and excess iodide inhibit the release of thyroid hormone from preformed stores. We thus tested the hypothesis that this was due to an inhibition of thyroglobulin breakdown. Rats were pre-treated with propylthiouracil (PTU) for 3 weeks in order to deplete their thyroids of thyroglobulin. While the PTU was continued, lithium chloride (0.25 mEq./100 g weight) or potassium iodide (3 mg per rat) were injected every 12 h for 3 days. Thereafter the thyroglobulin content in thyroid gland homogenates was measured. PTU pre-treatment lowered the thyroglobulin content from 4.21 to 0.22 mg/100 mg gland. Lithium caused a marked re-accumulation of thyroglobulin to 0.60 mg/100 mg within 3 days. While iodide alone had only a borderline effect, it markedly potentiated the action of lithium and a combination of the two drugs increased the thyroglobulin content to 1.04 mg/100 mg. Thyroxine was injected into similarly pre-treated animals to suppress secretion of thyrotrophic hormone. This markedly inhibited the proteolysis of thyroglobulin and 1.3 mg/100 mg gland accumulated after 3 days. Excess iodide, given in addition to thyroxine, decreased the amount of thyroglobulin accumulated to 0.75 mg/100 mg gland. To study whether this could be explained by an inhibitory action of iodide on thyroglobulin biosynthesis, thyroid glands from animals treated with excess iodide were incubated in vitro in the presence of 0.2 mm iodide for 3 h. Iodide decreased the incorporation of radioactive leucine into total thyroidal protein and into thyroglobulin by 25 and 35 % respectively. Iodide did not inhibit protein synthesis in the kidney, liver or muscle tissue. Thus, large doses of iodide selectively inhibit thyroglobulin biosynthesis.


1952 ◽  
Vol 196 (1) ◽  
pp. 51-68 ◽  
Author(s):  
H.W. Gerarde ◽  
Marion. Jones ◽  
Theodore. Winnick

Development ◽  
1965 ◽  
Vol 13 (3) ◽  
pp. 341-356
Author(s):  
F. S. Billett ◽  
Rosalba Collini ◽  
Louie Hamilton

In many bacterial systems chloramphenicol has been shown to inhibit protein synthesis (Hahn & Wisseman, 1951; Gale & Folkes, 1953). The precise mechanism of this inhibition is not clear, although the evidence suggests that the interaction of the soluble RNA-amino acid complex with the ribosomes is prevented because the attachment of the messenger RNA to the ribosomes is itself impaired (Lacks & Gros, 1959; Nathans & Lipman, 1961; Jardetsky & Julian, 1964; Julian & Jardetsky, 1964). In contrast to its effect on bacterial systems, chloramphenicol has been reported to have little or no action on the protein synthesis by cell-free extracts of mammalian cells (Rendi, 1959; Ehrenstein & Lipmann, 1961). A basis for this resistance has been proposed by Vazquez (1964), who finds that whereas bacterial ribosomes bind chloramphenicol, ribosomes from other organisms do not. Nevertheless, it cannot be stated with any confidence that chloramphenicol has no effect on the protein synthesis of animal cells.


1979 ◽  
Vol 35 (1) ◽  
pp. 253-266
Author(s):  
S.P. Gibbs

In 8 classes of algae, namely the Cryptophyceae, Raphidophyceae, Haptophyceae, Chrysophyceae, Bacillariophyceae, Xanthophyceae, Eustigmatophyceae and Phaeophyceae, the chloroplasts, in addition to being surrounded by a double-membraned chloroplast envelope, are also enclosed by a cisterna of endoplasmic reticulum called the chloroplast ER. Often this ER cisterna is continuous with the outher membrane of the nuclear envelope in such a manner that the nuclear envelope forms a part of the ER sac enclosing the chloroplast. In all these classes of algae except the Cryptophyceae, a regular network of tubules and vesicles, named the periplastidal reticulum, is present at a specific location between the chloroplast envelope and the chloroplast ER. In the Cryptophyceae, scattered vesicles are found between the chloroplast envelope and the chloroplast ER. Ribosomes which have been shown to be arranged to polysomes are found on the outer membrane of the chloroplast ER. It is proposed that nuclear-coded proteins which are destined for the chloroplast are synthesized on these polysomes, passing during synthesis into the lumen of the ER cisterna. Vesicles containing these proteins then pinch off the chloroplast ER and form the periplastidal reticulum. Vesicles containing these proteins then pinch off the chloroplast ER and form the periplastidal reticulum. Vesicles then fuse with the outer membrane of the chloroplast envelope thereby delivering their contents to the lumen of the chloroplast envelope. Proteins then cross the inner membrane of the chloroplast envelope in an as yet unknown manner. Experimental evidence for this hypothesis comes from studies on Ochromonas danica using chloramphenicol and spectinomycin, which inhibit protein synthesis on plastid ribosomes, and cycloheximide, which inhibits protein synthesis on cytoplasmic ribosomes. In cells of Ochromonas exposed to chloramphenicol or spectinomycin, the periplastidal reticulum proliferates markedly becoming several layers thick. Presumably this build up of periplastidal reticulum occurs because the transport of cytoplasmically synthesized plastid proteins is slowed down when protein synthesis in the chloroplast is inhibited. Conversely, when cells of Ochromonas are treated with cycloheximide, there is a reduction in the amount of periplastidal reticulum presumably because there are no cytoplasmically synthesized proteins to be transported into the chloroplast.


FEBS Letters ◽  
1987 ◽  
Vol 212 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Thomas Wagner ◽  
Martin Gross ◽  
Paul B. Sigler

2005 ◽  
Vol 16 (5) ◽  
pp. 533-541 ◽  
Author(s):  
Adam D. Richardson ◽  
William Aalbersberg ◽  
Chris M. Ireland

1966 ◽  
Vol 31 (3) ◽  
pp. 577-583 ◽  
Author(s):  
J. E. Cummins ◽  
H. P. Rusch

Actidione (cycloheximide), an antibiotic inhibitor of protein synthesis, blocked the incorporation of leucine and lysine during the S phase of Physarum polycephalum. Actidione added during the early prophase period in which mitosis is blocked totally inhibited the initiation of DNA synthesis. Actidione treatment in late prophase, which permitted mitosis in the absence of protein synthesis, permitted initiation of a round of DNA replication making up between 20 and 30% of the unreplicated nuclear DNA. Actidione treatment during the S phase permitted a round of replication similar to the effect at the beginning of S. The DNA synthesized in the presence of actidione was replicated semiconservatively and was stable through at least the mitosis following antibiotic removal. Experiments in which fluorodeoxyuridine inhibition was followed by thymidine reversal in the presence of actidione suggest that the early rounds of DNA replication must be completed before later rounds are initiated.


Sign in / Sign up

Export Citation Format

Share Document