scholarly journals A freeze-fracture study of early membrane events during mast cell secretion.

1977 ◽  
Vol 73 (3) ◽  
pp. 660-671 ◽  
Author(s):  
S J Burwen ◽  
B H Satir

The early membrane events taking place during mast cell secretion were followed in transmission and freeze-fracture electron microscopy. In order to slow down exocytosis and capture intermediate stages of membrane fusion, special conditions of incubation and stimulation were used. These were as follows: (a) the use of incubation media with altered ionic composition, and (b) stimulation with a low dosage of polymyxin B sulfate (4 microgram/ml) at low temperature (18 degrees C) for very short incubation times (30-60 s), with or without the presence of formaldehyde (0.8%). Under these conditions, unetchable circular impressions are found on the E face of the plasma membrane, 80-100 nm in diameter, with particles associated with their perimeters. In granule-to-granule fusion, the zone involved is demarcated by one or two rows of particles on the E face. In addition, raised circular areas of varying diameters (43-87 nm) surrounded by similar particles, also found on the E face, may represent potential sites before completion of fusion. Neither the circular impressions on the plasma membrane nor the sites on the granule membrane are permanent, but their appearance coincides with initiation of membrane fusion.

1981 ◽  
Vol 51 (1) ◽  
pp. 63-84
Author(s):  
C. Favard-Sereno ◽  
M.A. Ludosky ◽  
A. Ryter

The plasma membrane and its derivative, the phagosome membrane, were studied during and after ingestion of yeast of latex beads in Dictyostelium discoideum. Freeze-fracture electron microscopy, which provides information on the internal architecture of the membranes, and observation of thin sections of cells treated by cytochemical methods were used in parallel. For visualization of membrane sterols in the replicas, the cells were fixed in the presence of digitonin or the antibiotic filipin. No lateral phase separation occurred during yeast engulfment: the intramembranous particles (IMPs), phospholipids and sterols remained distributed at random in the forming phagosome membrane. In contrast architectural modifications of the membrane were observed upon phagosome internalization. Compared to the plasma membrane, the phagosome membrane displayed 2–3 times more IMPs a shift in the IMP size distribution and a higher sterol content. These changes were completed soon after phagosome closure; they were not related either to the nature of the ingested particles (yeast, latex beads) or to the pH in the membrane environment. The membrane changes too place when the phagosomes began to fuse with pre-existing digestive or autophagic vacuoles and lysosomes. Some of the experimental evidence suggests that the restructuring of the membrane may be related to the presence of hydrolases.


1976 ◽  
Vol 73 (8) ◽  
pp. 2823-2827 ◽  
Author(s):  
E. Y. Chi ◽  
D. Lagunoff ◽  
J. K. Koehler

1978 ◽  
Vol 33 (1) ◽  
pp. 301-316
Author(s):  
J.G. Swift ◽  
T.M. Mukherjee

Changes in the structural organization of membranes of mucous bodies and the plasma membrane that occur during mucus production in goblet cells of rat rectum have been studied by thin-section and freeze-fracture techniques. Immature mucous bodies are bounded by a trilaminar membrane and fracture faces of the membrane have randomly distributed intramembrane particles. During maturation, mucous bodies become packed tightly together and changes in the structure of their membranes include (1) fusion of apposing membranes of adjacent bodies to form a pentalaminar structure, (2) a reduction in the density of particles on membrane fracture faces, and (3) exclusion of particles from regions of membrane apposition. Some trilaminar membranes of mucous bodies fuse with the lumenal plasma membrane to form a pentalaminar structure. Sites of apposition between mucous body membranes and the lumenal plasma membrane are seen as particle-cleared bulges on fracture faces of the plasma membrane. Our results indicate that membrane reorganization associated with mucous production in goblet cells includes a reduction and redistribution of some membrane proteins and that membrane fusion occurs between portions of membranes from which proteins have been displaced.


Blood ◽  
1982 ◽  
Vol 60 (3) ◽  
pp. 583-594 ◽  
Author(s):  
N Dainiak ◽  
CM Cohen

Abstract In order to examine the contribution of cell surface materials to erythroid burst-promoting activity (BPA), we separated media conditioned by a variety of human cell types into pellets and supernatants by centrifugation. When added to serum-restricted cultures of nonadherent human marrow cells, pellets contained about half of the total stimulatory activity. Freeze-fracture electron microscopy of the pellets revealed the presence of unilamellar membrane vesicles ranging from 0.10 to 0.40 microM in diameter. The amount of BPA in culture increased with added vesicle concentration in a saturable fashion. Preparation of leukocyte conditioned medium (LCM) from 125I-wheat germ agglutinin labeled cells and studies comparing the glycoprotein composition of vesicles with that of leukocyte plasma membranes suggest that LCM-derived vesicles are of plasma membrane origin. Moreover, partially purified leukocyte plasma membrane preparations also contained BPA. While disruption of vesicles by freezing/thawing and hypotonic lysis did not alter BPA, heat, trypsin, or pronase treatment removed greater than 65% of BPA, implying that vesicle surface rather than intravesicular molecules express BPA. Results of BPA assays performed in two-layer clots indicated that proximity to target cells is required for vesicle BPA expression. We conclude that membrane vesicles spontaneously shed from cell surfaces may be important regulators of erythroid burst proliferation in vitro.


1978 ◽  
Vol 76 (1) ◽  
pp. 158-174 ◽  
Author(s):  
PL Moore ◽  
HL Bank ◽  
NT Brissie ◽  
SS Spicer

The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.


Sign in / Sign up

Export Citation Format

Share Document