scholarly journals Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light.

1977 ◽  
Vol 75 (2) ◽  
pp. 507-527 ◽  
Author(s):  
J C Besharse ◽  
J G Hollyfield ◽  
M E Rayborn

The rate of disk addition to rod outer segments (ROS) varies widely in Xenopus laevis tadpoles kept in cyclic light (12L:12D). When measured as radioactive band (3H-band) displacement during the 2nd day after injection of [3H]leucine, 75% of the daily increment of displacement occurred during the first 8 h of light. During the same interval, the number of open disks at the ROS base increased more than threefold. During the last 8 h of darkness, 3H-band displacement was undetectable and the number of open disks was reduced. These observations suggest the possibility that disk addition may occur discontinuously. During the 3rd and 4th days after injection of [3H]leucine, maximal displacement of the 3H-band occurred later in the day than on the 2nd day, its movement no longer corresponding to the increase in open disks. This delay in 3H-band displacement may reflect a time delay as a result of propagation of compressive stress in an elastic ROS system. Maximal disk loss from ROS as reflected in counts of phagosomes in the pigment epithelium occurred within 1 h of light exposure, and phagosome counts remained high for 4 h before declining to a low level in darkness. Modified lighting regimes affected the daily rhythms of shedding and disk addition differently, suggesting that control mechanisms for the two processes are not directly coupled. During 3 days in darkness, disk addition was reduced 50% compared to controls (12L:12D), whereas shedding was reduced by about 40%. Although reduced in level, shedding occurred as a free-running circadian rhythm. There was no evidence of rhythmicity of disk addition in darkness. In constant light, the rate of disk addition was not different from controls, but shedding was reduced by about 80% after the 1st day. This resulted in a 21% increase in ROS length. Among animals kept on a 2.5L:21.5D cycle, the rate of disk addition was reduced by 40% while shedding was maintained near control levels, resulting in a slight decrease in ROS length. These observations indicate that normal shedding requires alternating light and darkness, and that the daily rhythm of disk addition is due primarily to daily stimulation by light.

1977 ◽  
Vol 75 (2) ◽  
pp. 490-506 ◽  
Author(s):  
J G Hollyfield ◽  
J C Besharse ◽  
M E Rayborn

Membrane turnover in outer segments of Rana pipiens red rods (ROS) was studied in tadpoles maintained under cyclic lighting (12L:12D) at 23 degrees, 28 degrees, and 33 degrees C. Large fragments (greater than 2 microns in diameter or length) were shed from the ROS tips shortly after the onset of light. These were phagocytized by the pigment epithelium (PE) which caused an increase in the number of phagosomes greater than 2 microns in size (large phagosomes). Large phagosomes were present in highest numbers 2-4 h after light exposure and were degraded by 8-12 h. The proportion of ROS that shed each day after the onset of the light cycle increased with increment increases in temperatures (23 degrees C-18%, 28 degrees C-33%, 33 degrees C-42% per day), resulting, in a reduction in the average interval of time between repeated sheddings (23 degrees C-5.6 days, 28 degrees C-3 days, 33 degrees C-2.4 days) though the average numbers of disks shed from ROS at the various temperatures were not significantly different (23 degrees C-139.5 +/- 5.7, 28 degrees C-129.4 +/- 7.6, 33 degrees C-129.9 +/- 4.8 disks/shed packet). Phagosomes in the PE that were less than 2 microns in diameter (small phagosomes) were present in relatively constant numbers throughout the day, and their numbers increased at higher temperatures. The absence of a concomitant increase in small phagosomes as large phagosomes were degraded indicates that large phagosomes were not the major source of small phagosomes. When the PE was isolated to culture in the absence of the retina, these small phagosomes were degraded. The rate of disk addition to the ROS base was determined by autoradiography after [3H]leucine injection. The number of disks added per day increased with elevations of temperature (23 degrees C-32.4; 28 degrees C-55.9; 33 degrees C-65.5). The average number of disks added to the ROS between repeated sheddings (23 degrees C-181.4; 28 degrees C-167.7; 33 degrees C-157.2) was greater than the number of disks shed after light exposure. Inasmuch as the ROS show no net increase in length during the tadpole stages utilized, the remaining disks must be lost at some other time. Electron microscope analysis revealed the presence of small groups of disks in curled configurations at the tips of ROS, suggesting possible stages of detachment.(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 201 (1143) ◽  
pp. 149-167 ◽  

Light microscopic autoradiography and electron microscopy were used to examine outer segment renewal and the development of photoreceptors and pigment epithelium in the larval Xenopus retina. Following the injection of [ 3 H]-leucine at stages 37/38–40 (when outer segments first develop) or 53–54 (when rod outer segments (r. o. s.) attain adult length), a band of label accumulated at the base of r. o. s. and was displaced sclerally with time, whereas label was diffusely distributed in cone outer segments (c. o. s.). By taking into account the change in shape of r. o. s. from conical to cylindrical around stage 46, and calculating outer segment growth (determined from the rate of band displacement) as volume of material added with time, we found a constant rate of membrane addition (1.59 μm/day) from the time of initial outer segment formation. The changes observed in r. o. s. length therefore indicate variations in the rate of disk shedding and phagocytosis, which is minimal before stage 46 and rises to 1.19 μm/day after stages 53–54. Ultrastructural observation showed that although all photoreceptor outer segments form by the repeated evagination of the plasma membrane of the connecting cilium, r. o. s. and c. o. s. are distinguishable by differences in membrane appearance even before they develop divergent membrane topologies. Fibrous granules near the basal body of young receptors may be precursors to the elongating ciliary microtubules. Clusters of cisternae observed near the ciliary base in photoreceptor inner segments may represent a stage in the transport of newly-synthesized opsin to the outer segment base.


1993 ◽  
Vol 105 (3) ◽  
pp. 787-798
Author(s):  
S.M. Azarian ◽  
C.L. Schlamp ◽  
D.S. Williams

Calpain II was purified to apparent homogeneity from bovine neural retinas. It was found to be biochemically similar to brain calpain II, purified by the same procedure, with respect to: subunit mobility in SDS-polyacrylamide gel electrophoresis; Ca2+ sensitivity; inhibition by calpeptin and other cysteine protease inhibitors; and optimal pH. Semithin cryosections were immuno-labeled with antibodies specific for the catalytic subunit of calpain II. Calpain II was detected in most layers of the retina, with the most pronounced label present in the plexiform layers (synaptic regions) and the photoreceptor outer segments. In dark-adapted retinas, the label was distributed throughout the outer segments. In light-adapted retinas, outer segment labeling was concentrated in the connecting cilium, and the inner segments were labeled. A partially pure preparation of calpain II from isolated rod outer segments was found to have the same biochemical characteristics as calpain II prepared in the same way from the whole retina. The enzyme was distributed fairly evenly between the cytosolic and cytoskeletal fractions of isolated rod outer segments. Immunoblots of the rod outer segment cytoskeleton were used to determine the susceptibility of known components of the actin-based cytoskeleton to proteolysis by calpain II in vitro. Actin was not proteolyzed at all, alpha-actinin was only slowly degraded, but myosin II heavy chain was rapidly proteolyzed. Actin filaments have been shown previously to be associated with myosin II and alpha-actinin in a small domain within the connecting cilium, where they play an essential role in the morphogenesis of new disk membranes. The localization of calpain II in the connecting cilium after light exposure, combined with the in vitro proteolysis of myosin II, suggests that calpain II could be involved in light-dependent regulation of disk membrane morphogenesis by proteolysis of myosin II.


1996 ◽  
Vol 109 (2) ◽  
pp. 387-395 ◽  
Author(s):  
S.W. Ryeom ◽  
J.R. Sparrow ◽  
R.L. Silverstein

Mechanisms of phagocytosis are complex and incompletely understood. The retinal pigment epithelium provides an ideal system to study the specific aspects of phagocytosis since an important function of this cell is the ingestion of packets of membranous discs that are normally discarded at the apical ends of rod and cone cells during outer segment renewal. Here we provide evidence that rod outer segment phagocytosis by retinal pigment epithelium is mediated by CD36, a transmembrane glycoprotein which has been previously characterized on hematopoietic cells as a receptor for apoptotic neutrophils and oxidized low density lipoprotein. Immunocytochemical staining with monoclonal and polyclonal antibodies demonstrated CD36 expression by both human and rat retinal pigment epithelium in transverse cryostat sections of normal retina and in primary cultured cells. By western blot analysis of retinal pigment epithelial cell lysates, polyclonal and monoclonal antibodies to CD36 recognized an 88 kDa protein which comigrated with platelet CD36. Furthermore, the synthesis of CD36 mRNA by retinal pigment epithelium was confirmed by reverse transcriptase-PCR using specific CD36 oligonucleotides. The addition of CD36 antibodies to cultured retinal pigment epithelial cells reduced the binding and internalization of 125I-labeled rod outer segments by 60%. Immunofluorescence confocal microscopy confirmed that outer segment uptake was significantly diminished by an antibody to CD36. Moreover, we found that transfection of a human melanoma cell line with CD36 cDNA enabled these cells to bind and internalize isolated photoreceptor outer segments as seen by double immunofluorescent staining for surface bound and total cell-associated rod outer segments, and by measurement of cell-associated 125I-labeled rod outer segments. We conclude that the multifunctional scavenger receptor CD36 participates in the clearance of photoreceptor outer segments by retinal pigment epithelium and thus, participates in the visual process.


Sign in / Sign up

Export Citation Format

Share Document