scholarly journals Quantification of ganglioside GM1 synthetase activity on intact chick neural retinal cells.

1982 ◽  
Vol 93 (1) ◽  
pp. 76-81 ◽  
Author(s):  
M Pierce

Neural retinal cells from 9-d-old chick embryos were assayed for uridine diphosphate (UDP)-galactose:ganglioside GM2 galactosyltransferase, or GM1 synthetase, activity using the oligosaccharide fragment of GM2, oligo-GM2, oligo-GM2, as the exogenous acceptor. The results demonstrated that this enzyme activity was present on the external surfaces of intact cells. Little difference between the specific activities of cell surface GM1 synthetase could be detected when cells derived from dorsal and ventral segments of the neural retina were compared. These results suggested that this cell-surface enzyme was not present in a concentration gradient along the dorsoventral axis of the neural retina.

1971 ◽  
Vol 51 (2) ◽  
pp. 536-547 ◽  
Author(s):  
Stephen Roth ◽  
Edward J. McGuire ◽  
Saul Roseman

Intact chicken embryo neural retina cells have been shown to catalyze the transfer of galactose-14C from uridine diphosphate galactose (UDP-galactose) to endogenous acceptors of high molecular weight as well as to exogenous acceptors. Four lines of evidence indicate that the galactosyltransferases catalyzing these reactions are at least partly located on the outside surface of the plasma membrane: (a) there is no evidence for appreciable uptake of sugar-nucleotides by vertebrate cells nor did unlabeled galactose, galactose 1-phosphate, or UDP-glucose interfere with the radioactivity incorporated during the reaction; (b) the cells remained essentially intact during the course of the reaction; (c) there was insufficient galactosyltransferase activity in the cell supernatants to account for the incorporation of galactose-14C into cell pellets; and (d) the intact cells could transfer galactose to acceptors of 106 daltons, and the product of this reaction was in the extracellular fluid. Appropriate galactosyl acceptors interfered with the adhesive specificity of neural retina cells; other compounds, which were not acceptors, had no effect. These results suggested that the transferase-acceptor complex may play a role in cellular recognition.


1976 ◽  
Vol 22 (3) ◽  
pp. 585-596
Author(s):  
H. Fujisawa ◽  
H. Morioka ◽  
K. Watanabe ◽  
H. Nakamura

Ultrastructural studies of thin-sectioned and freeze-cleaved materials were performed on developing retinal tissues of 3- to 9-day-old chick embryos to clarify the junctional structures between neural retinal cells and between neural retinal cells and cells of the pigmented epithelium. Frequency, size and position of gap junctions in developing neural retina are different at each stage of development. In 3-day-old embryos, some cells adhere to each other by gap junctions immediately below the outer limiting membrane of neural retinae. The size and number of gap junctions increase remarkably during 5–6 days of incubation. In this period of development, well developed gap junctions consisting of subcompartments of intramembrane particles are found between cell surfaces at both the outer limiting membrane region and the deeper portion of the neural retina. Gap junctions disappear thereafter, and at 7-5 days of incubation, small gap junctions are predominant between cell surfaces at the outer limiting membrane region, while the frequency of gap junctions in the deeper portion is very low. At 9 days of incubation, gap junctions are rarely found. Typical gap junctions are always found between neural retinal cells and those of the pigmented epithelium in embryos up to 7-5 days of incubation. Tight junctions are not found in the neural retina or between neural retina and pigmented epithelium throughout the stages examined.


1985 ◽  
Vol 100 (4) ◽  
pp. 1192-1199 ◽  
Author(s):  
G J Cole ◽  
D Schubert ◽  
L Glaser

Embryonic chick neural retina cells in culture release complexes of proteins and glycosaminoglycans, termed adherons, which stimulate cell-substratum adhesion when adsorbed to nonadhesive surfaces. Two distinct retinal cell surface macromolecules, a 170,000-mol-wt glycoprotein and a heparan sulfate proteoglycan; are components of adherons that can independently promote adhesion when coated on inert surfaces. The 170,000-mol-wt polypeptide contains a heparin-binding domain, as indicated by its retention on heparin-agarose columns and its ability to bind [3H]heparin in solution. The attachment of embryonic chick retinal cells to the 170,000-mol-wt protein also depends upon interactions between the protein and the heparan sulfate proteoglycan, since heparan sulfate in solution disrupts adhesion of chick neural retina cells to glass surfaces coated with the 170,000-mol-wt protein. This adhesion is not impaired by chondroitin sulfate or hyaluronic acid, which indicates that inhibition by heparan sulfate is specific. Polyclonal antisera directed against the cell surface heparan sulfate proteoglycan also inhibit attachment of retinal cells to the 170,000-mol-wt protein, which suggests that cell-adheron binding is mediated in part by interactions between cell surface heparan sulfate proteoglycan and 170,000-mol-wt protein contained in the adheron particles. Previous studies have indicated that this type of cell-substratum adhesion is tissue-specific since retina cells do not attach to muscle adherons. Schubert D., M. LaCorbiere, F. G. Klier, and C. Birdwell, 1983, J. Cell Biol. 96:990-998.


Author(s):  
Anthony Demsey ◽  
Christopher W. Stackpole

The murine leukemia viruses are type-C oncornaviruses, and their release from the host cell involves a “budding” process in which the newly-forming, RNA-containing virus core becomes enveloped by modified cell surface membrane. Previous studies revealed that the released virions possess a dense array of 10 nm globular projections (“knobs”) on this envelope surface, and that these knobs contain a 70, 000 MW glycoprotein (gp70) of viral origin. Taking advantage of this distinctive structural formation, we have developed a procedure for freeze-drying and replication of intact cells which reveals surface detail superior to other surface replica techniques, and sufficient to detect even early stages of virus budding by localized aggregation of these knobs on the cell surface.Briefly, cells growing in monolayer are seeded onto round glass coverslips 10-12 mm in diameter. After a period of growth, cells are fixed in situ for one hour, usually with 1% OsO4 in 0. 1 M cacodylate buffer, and rinsed in distilled water.


1978 ◽  
Vol 77 (3) ◽  
pp. 722-734 ◽  
Author(s):  
MM Weiser ◽  
MM Neumeier ◽  
A Quaroni ◽  
K Kirsch

The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.


1988 ◽  
Vol 8 (3) ◽  
pp. 1186-1196
Author(s):  
M A Williams ◽  
R A Lamb

The structure of the carbohydrate components of NB, the small integral membrane glycoprotein of influenza B virus, was investigated. The carbohydrate chains of NB are processed from the high-mannose form (NB18) to a heterogeneous form of much higher molecular weight, designated NBp. Selection of this carbohydrate-containing form of NB with Datura stramonium lectin, its susceptibility to digestion by endo-beta-galactosidase, and determination of the size of NBp glycopeptides by gel filtration chromatography suggested that the increase in molecular weight is due to processing to polylactosaminoglycan. Investigation of the polypeptides produced by influenza B/Lee/40 virus infection of several cell types and another strain of influenza B virus suggested that the signal for modification to polylactosaminoglycan is contained in NB. Expression of mutants of NB lacking either one or both of the normal N-terminal sites of asparagine-linked glycosylation indicated that both carbohydrate chains are modified to contain polylactosaminoglycan. NBp and a small amount of unprocessed NB18 are expressed at the infected-cell surface, as determined by digestion of the surfaces of intact cells with various endoglycosidases. Unglycosylated NB, expressed either in influenza B virus-infected cells treated with tunicamycin or in cells expressing the NB mutant lacking both N-linked glycosylation sites, was expressed at the cell surface, indicating that NB does not require carbohydrate addition for transport.


1981 ◽  
Vol 51 (1) ◽  
pp. 229-240
Author(s):  
D.E. Maslow ◽  
J.P. Harlos

The role of cell surface charge in cellular interactions has been the subject of conflicting reports. The major contribution to the net cell surface negativity of all mammalian cells studied is made by the sialic acid moieties of the surface glycoproteins, while ribonuclease-susceptible sites have been shown to contribute to the lesser extent on some cell types. Experiments were done to determine whether these anionic groups at the cell periphery affect the aggregation and sorting behaviour of embryonic chick neural retina cells when cultured alone or in combination with embryonic heart cells. The net negative surface charge density, as determined by cell electrophoretic mobility, of neuraminidase- or ribonuclease-treated cells was significantly decreased immediately after incubation with the enzymes, and the treatment with neuraminidase resulted in a reduction in the binding of colloidal iron hydroxide particles at the cell surface. Both enzymes caused reduced aggregate size in gyratory shaker cultures of neural retina and mixed cell suspensions, and fewer neural retina cells adherent to microtest plate surfaces, but no differences were seen in their histological appearance or sorting pattern in mixed shaker culture. The results indicate that the neuraminidase- and ribonuclease-susceptible groups at the periphery of embryonic neural retina cells play a role in some aspects of cell contact behaviour in ways other than reduction in net negative surface charge.


1997 ◽  
Vol 110 (6) ◽  
pp. 687-694 ◽  
Author(s):  
M. Steegmaier ◽  
E. Borges ◽  
J. Berger ◽  
H. Schwarz ◽  
D. Vestweber

Neutrophils and subsets of lymphocytes bind to E-selectin, a cytokine inducible adhesion molecule on endothelial cells. The E-selectin-ligand-1 (ESL-1) is a high affinity glycoprotein ligand which participates in the binding of mouse myeloid cells to E-selectin. The sequence of mouse ESL-1 is highly homologous to the cysteine rich FGF receptor (CFR) in chicken and the rat Golgi protein MG160. We have analysed the subcellular distribution of ESL-1 by indirect immunofluorescence, flow cytometry, various biochemical techniques and by immunogold scanning electron microscopy. We could localize ESL-1 in the Golgi as well as on the cell surface of 32Dc13 cells and neutrophils. Cell surface staining was confirmed by cell surface biotinylation and by cell surface immunoprecipitations in which antibodies only had access to surface proteins on intact cells. In addition, ESL-1(high) and ESL-1(low) expressing cells, sorted by flow cytometry, gave rise to high and low immunoprecipitation signals for ESL-1, respectively. Based on immunogold labeling of intact cells, we localized ESL-1 on microvilli of 32Dc13 cells and of the lymphoma cell line K46. Quantitative evaluation determined 80% of the total labeling for ESL-1 on microvilli of K46 cells while 69% of the labeling for the control antigen B220 was found on the planar cell surface. These data indicate that ESL-1 occurs at sites on the leukocyte cell surface which are destined for the initiation of cell contacts to the endothelium.


1997 ◽  
Vol 52 (5-6) ◽  
pp. 351-358 ◽  
Author(s):  
Eloise C. Fernandes ◽  
José R. Meyer-Fernandes ◽  
Mário A. C. Silva-Neto ◽  
Anibal E. Vercesi

Abstract The results presented in this paper indicate that procyclic forms of Trypanosoma brucei possess a phosphatase activity detected in the external cell surface able to hydrolyze about 0.7 nmol ∙ mg−1. min−1 p-nitrophenylphosphate. A faster rate of hydrolysis was observed when membrane-enriched fractions were used. This activity is weakly sensitive to 1 mᴍ NaF, 10 mᴍ tartrate and 10 mᴍ levamizole but strongly inhibited by 0.1 mᴍ vanadate. Inhibition by both NaF and vanadate have a competitive character. This phosphatase activity decreases by increasing the pH from 6.8 to 8.4, a pH range in which cell viability was maintained during at least 1 hour. In the membrane-enriched fractions this phosphatase activity showed to be an acid phosphatase. In addition, intact cells could catalyze the dephosphorylation of [32P]phosphocasein phosphorylated at serine and threonine residues.


Sign in / Sign up

Export Citation Format

Share Document