scholarly journals Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin.

1983 ◽  
Vol 96 (1) ◽  
pp. 112-123 ◽  
Author(s):  
J Laterra ◽  
J E Silbert ◽  
L A Culp

Proteins with affinities for specific glycosaminoglycans (GAC's) were used as probes for testing the potential of cell surface GAG's to mediate cell adhesive responses to extracellular matrices (ECM). Plasma fibronectin (FN) and proteins that bind hyaluronate (cartilage proteo-glycan core and link proteins) or heparan sulfate (platelet factor 4 [PF4]) were adsorbed to inert substrata to evaluate attachment and spreading of several 3T3 cell lines. Cells failed to attach to hyaluronate-binding substrata. The rates of attachment on PF4 were identical to those on FN; however, PF4 stimulated formation of broad convex lamellae but not tapered cell processes fibers during the spreading response. PF4-mediated responses were blocked by treating the PF4-adsorbed substratum with heparin (but not chondroitin sulfate), or alternatively the cells with Flavobacter heparinum heparinase (but not chondroitinase ABC). Heparinase treatment did not inhibit cell attachment to FN but did inhibit spreading. Cells spread on PF4 or FN contained similar Ca2+-independent cell-substratum adhesions, as revealed by EGTA-mediated retraction of their substratum-bound processes. Microtubular networks reorganized in cells on PF4 but failed to extend into the broadly spread lamellae, where fine microfilament bundles had developed. Stress fibers, common on FN, failed to develop on PF4. These experiments indicate that (a) heparan sulfate proteoglycans are critical mediators of cell adhesion and heparan sulfate-dependent adhesion via PF4 is comparable in some, but not all, ways to FN-mediated adhesion, (b) the uncharacterized and heparan sulfate-independent "cell surface" receptor for FN permits some but not all aspects of adhesion, and (c) physiologically compatible and complete adhesion of fibroblasts requires binding of extracellular matrix FN to both the unidentified "cell surface" receptor and heparan sulfate proteoglycans.

2015 ◽  
Vol 1 (10) ◽  
pp. e1500821 ◽  
Author(s):  
Hong-Bo Pang ◽  
Gary B. Braun ◽  
Erkki Ruoslahti

Cell-penetrating peptides (CPPs) have been widely used to deliver nanomaterials and other types of macromolecules into mammalian cells for therapeutic and diagnostic use. Cationic CPPs that bind to heparan sulfate (HS) proteoglycans on the cell surface induce potent endocytosis; however, the role of other surface receptors in this process is unclear. We describe the convergence of an HS-dependent pathway with the C-end rule (CendR) mechanism that enables peptide ligation with neuropilin-1 (NRP1), a cell surface receptor known to be involved in angiogenesis and vascular permeability. NRP1 binds peptides carrying a positive residue at the carboxyl terminus, a feature that is compatible with cationic CPPs, either intact or after proteolytic processing. We used CPP and CendR peptides, as well as HS- and NRP1-binding motifs from semaphorins, to explore the commonalities and differences of the HS and NRP1 pathways. We show that the CendR-NRP1 interaction determines the ability of CPPs to induce vascular permeability. We also show at the ultrastructural level, using a novel cell entry synchronization method, that both the HS and NRP1 pathways can initiate a macropinocytosis-like process and visualize these CPP-cargo complexes going through various endosomal compartments. Our results provide new insights into how CPPs exploit multiple surface receptor pathways for intracellular delivery.


1985 ◽  
Vol 101 (3) ◽  
pp. 1071-1077 ◽  
Author(s):  
D Schubert ◽  
M LaCorbiere

Adherons are high molecular weight glycoprotein complexes which are released into the growth medium of cultured cells. They mediate the adhesive interactions of many cell types, including those of embryonic chick neural retina. The cell surface receptor for chick neural retina adherons has been purified, and shown to be a heparan sulfate proteoglycan (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 100:56-63). This paper describes the isolation and characterization of a protein in neural retina adherons which interacts specifically with the cell surface receptor. The 20,000-mol-wt protein, called retinal purpurin (RP), stimulates neural retina cell-substratum adhesion and prolongs the survival of neural retina cells in culture. The RP protein interacts with heparin and heparan sulfate, but not with other glycosaminoglycans. Monovalent antibodies against RP inhibit RP-cell adhesion as well as adheron-cell interactions. The RP protein is found in neural retina, but not in other tissues such as brain and muscle. These data suggest that RP plays a role in both the survival and adhesive interactions of neural retina cells.


1985 ◽  
Vol 100 (1) ◽  
pp. 56-63 ◽  
Author(s):  
D Schubert ◽  
M LaCorbiere

Embryonic chick neural retina cells release glycoprotein complexes, termed adherons, into their culture medium. When absorbed onto the surface of petri dishes, neural retina adherons increase the initial rate of neural retina cell adhesion. In solution they increase the rate of cell-cell aggregation. Cell-cell and adheron-cell adhesions of cultured retina cells are selectively inhibited by heparan-sulfate glycosaminoglycan, but not by chondroitin sulfate or hyaluronic acid, suggesting that a heparan-sulfate proteoglycan may be involved in the adhesion process. We isolated a heparan-sulfate proteoglycan from the growth-conditioned medium of neural retina cells, and prepared an antiserum against it. Monovalent Fab' fragments of these antibodies completely inhibited cell-adheron adhesion, and partially blocked spontaneous cell-cell aggregation. An antigenically and structurally similar heparan-sulfate proteoglycan was isolated from the cell surface. This proteoglycan bound directly to adherons, and when absorbed to plastic, stimulated cell-substratum adhesion. These data suggest that a heparan-sulfate proteoglycan on the surface of chick neural retina cells acted as a receptor for adhesion-mediating glycoprotein complexes (adherons).


Author(s):  
Patric Jd Delhanty ◽  
Martin Huisman ◽  
Karina Prins ◽  
Jacobie Steenbergen ◽  
Rosinda Mies ◽  
...  

Acylated ghrelin (AG) is a gut-derived peptide with growth hormone secretagogue (GHS), orexigenic and other physiological activities mediated by GHS receptor-1a (GHSR). Ghrelin occurs in unacylated form (UAG) with activities opposing AG, although its mechanism of action is unknown. UAG does not antagonize AG at GHSR, and has biological effects on cells that lack this receptor. Because UAG binds to cells, it has been hypothesized that UAG acts via a cell-surface receptor, although this has not been confirmed. This study aimed to identify cell surface proteins to which UAG binds that could modulate or mediate its biological effects. The MCF7 cell-line was used as a model because UAG induces ERK signaling in these cells in the absence of GHSR. Using ligand-receptor capture and LC-MS/MS we identified specific heparan-sulfate proteoglycans (HSPGs) to which UAG interacts on cell surfaces. In line with this, UAG, as well as AG, bind with high affinity to heparin, and heparin and heparinase treatment suppress, whereas HSPG overexpression increases, UAG binding to MCF7 cell surfaces. Moreover, heparin suppresses the ERK response to UAG. However, conversion of the lysines in UAG to alanine, which prevent its binding to heparin and cell surface HSPGs, does not prevent its activation of ERK. Our data show that the interaction of UAG with HSPGs modulates its biological activity in cells. More broadly, the interaction of UAG and AG with HSPGs could be important for the specificity and potency of their biological action in vivo.


2008 ◽  
Vol 82 (24) ◽  
pp. 12565-12568 ◽  
Author(s):  
Patricia M. Day ◽  
Douglas R. Lowy ◽  
John T. Schiller

ABSTRACT Papillomavirus infection normally involves virion binding to cell surface heparan sulfate proteoglycans (HSPGs). However, we found that human papillomavirus type 16 pseudovirions efficiently bound and infected cells lacking HSPGs if their L2 capsid protein was precleaved by furin, a cellular protease required for infection. The inability of pseudovirions to efficiently bind and infect cultured primary keratinocytes was also overcome by furin precleavage, suggesting that the defect involves altered HSPG modification. We conclude that the primary function of HSPG binding is to enable cell surface furin cleavage of L2 and that binding to a distinct cell surface receptor(s) is a subsequent step of papillomavirus infection.


2002 ◽  
Vol 115 (16) ◽  
pp. 3309-3318 ◽  
Author(s):  
Hidekazu Takagi ◽  
Yasushi Asano ◽  
Naomi Yamakawa ◽  
Isamu Matsumoto ◽  
Koji Kimata

Chondroitin sulfate proteoglycans, including PG-M/versican, inhibit cell-substratum adhesion. They achieve this through their chondroitin sulfate chains. In order to define the molecular mechanism for this inhibition, we investigated the influence of these chains on cell attachment to substratum,the first step in cell adhesion. Chondroitin sulfate chains did not prevent cell attachment. In fact, a variety of cells attached to chondroitin sulfate,implying the existence of putative receptors and/or binding proteins for this extracellular matrix glycosaminoglycan. Detergent-extracted human fibroblast membrane protein extracts were examined by affinity chromatography in the presence of Ca2+ on chondroitin sulfate immobilized on agarose CL-6B. A 68 kDa and a 35 kDa protein were isolated, sequenced and demonstrated to be annexin 6 and annexin 4, respectively. Next we used A431 cells devoid of annexin 6 expression to verify that annexin 6 is the receptor for this glycosaminoglycan. We confirmed that A431 cells were unable to attach to the chondroitin sulfate substratum and that the stable transfectants expressing annexin 6 conferred the ability to attach to chondroitin sulfate chains. Further, the presence of annexin 6 on the cell surface was confirmed by fluorescence-activated cell sorting analysis using the annexin 6 antibody;annexin 4 is not present on the cell surface. In summary, annexin 6 is a candidate receptor for chondroitin sulfate chains.


2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

Sign in / Sign up

Export Citation Format

Share Document