scholarly journals ELECTRON MICROSCOPIC OBSERVATIONS ON ALLERGIC ENCEPHALOMYELITIS IN THE RABBIT

1960 ◽  
Vol 112 (5) ◽  
pp. 735-742 ◽  
Author(s):  
Sarah A. Luse ◽  
David B. McDougal

Allergic encephalomyelitis was produced in rabbits by injection of white matter from bovine brain plus adjuvants. Electron microscopy revealed focal demyelinization in both the spinal roots and cord. The peripheral lesions were characterized by vacuolization of Schwann cytoplasm, destruction of the myelin sheath, and by some appearances suggesting remyelinization. In the cord there was a marked perivascular inflammatory infiltration with focal destruction of the blood-brain barrier as demonstrated by formation of an abnormal interstitial space about capillaries. Mitochondria of oligodendroglia were strikingly swollen whereas those of other cells were morphologically normal. Axons were denuded of their myelin sheaths and the myelin detritus sequestered within gitter cells. Fibrous astrocytic gliosis occurred to some degree. Focal evidences of myelin reformation were noted centrally as well as peripherally. Allergic encephalomyelitis, as a primary demyelinating lesion, is contrasted with Wallerian degeneration in which myelin degeneration is secondary to destruction of the axon.

1992 ◽  
Vol 116 (2) ◽  
pp. 395-403 ◽  
Author(s):  
G J Kidd ◽  
J W Heath ◽  
B D Trapp ◽  
P R Dunkley

Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hypotheses, axons involved in double myelination in the rat superior cervical ganglion were destroyed by chronic guanethidine treatment. Guanethidine-induced sympathectomy resulted in a Wallerian-like pattern of myelin degeneration within 10 d. In doubly myelinated configurations the axon, inner myelin sheath (which lies in contact with the axon), and approximately 75% of outer myelin sheaths broke down by this time. Degenerating outer sheaths were not found at later periods. It is probably that outer sheaths that degenerated were only partially displaced from the axon at the commencement of guanethidine treatment. In contrast, analysis of serial sections showed that completely displaced outer internodes remained ultrastructurally intact. These internodes survived degeneration of the axon and inner sheath, and during the later time points (2-6 wk) they enclosed only connective tissue elements and reorganized Schwann cells/processes. Axonal regeneration was not observed within surviving outer internodes. We therefore conclude that myelin maintenance in the superior cervical ganglion is not dependent on direct axonal contact or diffusible axonal factors. In addition, physical association of Schwann cells with the degenerating axon may be an important factor in precipitating myelin breakdown during Wallerian degeneration.


Author(s):  
Roy O. Weller

The length of axon that each Schwann cell myelinates in a normal peripheral nerve is approximately proportional to the diameter of the axon and the thickness of the myelin sheath produced. When segmental demyelination occurs, individual segments, represented by the length of axon covered by one Schwann cell, lose their myelin sheaths but the axons are preserved. This differs from Wallerian degeneration where myelin destruction occurs along the length of a nerve fibre following death of the axon.In experimental diphtheritic neuropathy, an acute segmental demyelinating disease, lysosomes accumulate within the Schwann cells prior to disruption of the myelin sheath; furthermore, the site of initial myelin breakdown appears to be closely related to the collections of lysosomes. The Schwann cell starts to form a new myelin sheath around the axon probably within a few hours of the destruction of the original myelin sheath, and while the latter is being catabolised within lysosomal vacuoles This stage of remyelination follows a similar course to primary myelination, so that the recovery stage is characterised by normal axons with either no myelin, or surrounded by sheaths that are very thin relative to the diameter of the axon.


Author(s):  
Kewei Huang ◽  
Lijuan Wu ◽  
Yi Luo

ABSTRACT:Since Binswanger’s description of subcortical arteriosclerotic encephalopathy in 1894, numerous cases have been reported. Several authors doubt the validity of this malady, although the majority consider it to be a disease entity. We report seven cases with this type of pallor of myelin, only two of which are accompanied by a history of dementia. Among the seven cases, two had arteriosclerosis of penetrating arteries and arterioles in cerebral white matter. Electron microscopy showed splitting of myelin sheaths, probably the result of edema. In reviewing the blood supply of the cerebral white matter, we conclude that no pathological alterations of medullary branches of the cerebral arteries, the same vessels supplying the white matter, can give rise to such diffuse pallor of white matter and spare the arcuate fibres. This pallor can only be due to cerebral edema, most likely of hypoxic-ischemic, hypotensive, or acidotic origin. We also contend that arteriosclerosis can only cause dementia through multiple infarcts or lacunae, if it indeed leads to dementia.


1972 ◽  
Vol 36 (4) ◽  
pp. 407-415 ◽  
Author(s):  
George J. Dohrmann ◽  
Franklin C. Wagner ◽  
Paul C. Bucy

✓ The white matter of the monkey spinal cord was examined by electron microscopy during the first 4 hours following a contusion sufficient to produce a transitory paraplegia. At 5 min after injury the myelinated nerve fibers resembled those of the control animals. By 15 and 30 min after contusion, selected fibers were noted to have moderately enlarged periaxonal spaces. Attenuated myelin sheaths, splaying of the myelin lamellae, and a marked increase in the periaxonal spaces were present in affected nerve fibers at 1 hr following trauma. By 4 hrs after contusion approximately one-fourth of the fibers showed breakage of the myelin sheaths and consequent denuding of axons or marked attenuation of the myelin sheaths, greatly enlarged periaxonal spaces, and degeneration of the associated axons.


2020 ◽  
Vol 55 (4) ◽  
pp. 188-196
Author(s):  
Xuewen Su ◽  
Haifeng Yuan ◽  
Yuxin Bai ◽  
Junlong Chen ◽  
Mingze Sui ◽  
...  

<b><i>Introduction:</i></b> White matter injury (WMI) is the most common brain injury in preterm infants and can result in life-long neurological deficits. The main cause of WMI is damage to the oligodendrocyte precursor cells (OPC) in the brain that results in delayed myelin sheath formation, or the destruction of existing myelin sheaths. OPC undergo highly regulated and strictly timed developmental changes that result in their transformation to mature oligodendrocytes capable of myelin production. <b><i>Objective:</i></b> Studies have shown that clobetasol strongly promotes differentiation of OPC into myelin sheaths. Therefore, we hypothesized that clobetasol may be a therapeutic option for the treatment of preterm WMI. <b><i>Methods:</i></b> We induced a WMI rat model and observed white matter damage under an optical microscope. Rats subjected to WMI were injected intraperitoneally with clobetasol (2 or 5 mg/kg daily) from day 1 to day 5 in the early treatment groups, or from day 6 to day 10 in the late treatment groups. After 17 days, the rats were sacrificed and the expression of myelin basic protein (MBP) was visualized using immunofluorescence. In addition, we evaluated myelin sheath formation using electron microscopy. The rats were also subjected to the suspension test, ramp test, and open field test to evaluate neurobehavioral functions. <b><i>Results:</i></b> A rat model of WMI was successfully induced. It was found that clobetasol significantly induced MBP expression and myelin sheath formation and improved neurobehavioral function in the rats subjected to WMI. <b><i>Conclusions:</i></b> Our results indicate that clobetasol attenuates WMI by promoting OPC differentiation, and it may be an effective therapeutic agent for the treatment of preterm WMI.


1988 ◽  
Vol 107 (3) ◽  
pp. 877-886 ◽  
Author(s):  
J E Heuser ◽  
J Keen

Assembly proteins were extracted from bovine brain clathrin-coated vesicles with 0.5 M Tris and purified by clathrin-Sepharose affinity chromatography, then adsorbed to mica and examined by freeze-etch electron microscopy. The fraction possessing maximal ability to promote clathrin polymerization, termed AP-2, was found to be a tripartite structure composed of a relatively large central mass flanked by two smaller mirror-symmetric appendages. Elastase treatment quantitatively removed the appendages and clipped 35 kD from the molecule's major approximately 105-kD polypeptides, indicating that the appendages are made from portions of these polypeptides. The remaining central masses no longer promote clathrin polymerization, suggesting that the appendages are somehow involved in the clathrin assembly reaction. The central masses are themselves relatively compact and brick-shaped, and are sufficiently large to contain two copies of the molecule's other major polypeptides (16- and 50-kD), as well as two copies of the approximately 70-kD protease-resistant portions of the major approximately 105-kD polypeptides. Thus the native molecule seems to be a dimeric, bilaterally symmetrical entity. Direct visualization of AP-2 binding to clathrin was accomplished by preparing mixtures of the two molecules in buffers that marginally inhibit AP-2 aggregation and cage assembly. This revealed numerous examples of AP-2 molecules binding to the so-called terminal domains of clathrin triskelions, consistent with earlier electron microscopic evidence that in fully assembled cages, the AP's attach centrally to inwardly-directed terminal domains of the clathrin molecule. This would place AP-2s between the clathrin coat and the enclosed membrane in whole coated vesicles. AP-2s linked to the membrane were also visualized by enzymatically removing the clathrin from brain coated vesicles, using purified 70 kD, uncoating ATPase plus ATP. This revealed several brick-shaped molecules attached to the vesicle membrane by short stalks. The exact stoichiometry of APs to clathrin in such vesicles, before and after uncoating, remains to be determined.


2017 ◽  
Vol 36 (2) ◽  
pp. 113
Author(s):  
Chen Li ◽  
Lei Zhang ◽  
Qiaoya Ma ◽  
Yong Tang ◽  
Ya He

Studies have provided qualitative evidence of de-myelination and re-myelination in aged brain white matter. However, there have been no quantitative evidences of degeneration and regeneration of myelin sheaths in white matter. The present study was designed to investigate the quantitative changes in myelin sheaths using unbiased stereological techniques and qualitative changes using electron microscopy in aged brain white matter. Results obtained showed that in brain white matter, the total volume of myelin sheaths of old-age female rats was not significantly different from that of young female rats, but the total length of myelinated fibers in old female rats was significantly decreased by 46.1% when compared with that of young female rats. Myelin sheath volume per unit length of myelinated fibers of old female rats was significantly increased by 43.4% compared with that of young female rats. The mean thickness of myelin sheaths in the white matter of the old rats was significantly increased by 33.3%, when compared with that of young female rats. In age-related loss of myelinated fibers, most fibers had diameters less than 1.4 μm, and myelin sheath thicknesses less than 0.14 μm, but the length of myelinated fibers with diameters more than 0.6 μm and myelin sheath thicknesses more than 0.22 μm increased with age. Myelinated fibers with ratios of myelin sheath thicknesses to myelinated fiber external diameter less than 0.21 were significantly lower in elderly rats than in young rats. However, the total length of myelinated fibers with ratios of myelin sheath thicknesses to myelinated fiber external diameter more than 0.23 was higher in aged rats than in young rats. About 6.58% of myelin sheaths showed degenerative alterations, while 0.88% myelin sheaths showed regenerative alterations. This study provides stereological evidence not only for degeneration but also regeneration of myelin sheaths in aged white matter. 


Author(s):  
J. Frank ◽  
P.-Y. Sizaret ◽  
A. Verschoor ◽  
J. Lamy

The accuracy with which the attachment site of immunolabels bound to macromolecules may be localized in electron microscopic images can be considerably improved by using single particle averaging. The example studied in this work showed that the accuracy may be better than the resolution limit imposed by negative staining (∽2nm).The structure used for this demonstration was a halfmolecule of Limulus polyphemus (LP) hemocyanin, consisting of 24 subunits grouped into four hexamers. The top view of this structure was previously studied by image averaging and correspondence analysis. It was found to vary according to the flip or flop position of the molecule, and to the stain imbalance between diagonally opposed hexamers (“rocking effect”). These findings have recently been incorporated into a model of the full 8 × 6 molecule.LP hemocyanin contains eight different polypeptides, and antibodies specific for one, LP II, were used. Uranyl acetate was used as stain. A total of 58 molecule images (29 unlabelled, 29 labelled with antl-LPII Fab) showing the top view were digitized in the microdensitometer with a sampling distance of 50μ corresponding to 6.25nm.


Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Sign in / Sign up

Export Citation Format

Share Document